scholarly journals Functional responses of stream fish communities to rural and urban land uses

2021 ◽  
Vol 19 (3) ◽  
Author(s):  
Natali Oliva Roman Miiller ◽  
Almir Manoel Cunico ◽  
Éder André Gubiani ◽  
Pitágoras Augusto Piana

Abstract We tested the effects of ruralization and urbanization on the functional diversity indices and the composition of functional traits of Neotropical stream fish communities. The study was carried out in 24 streams of the Pirapó, Piquiri, Paraná III and Iguassu river basins. Land use in the watershed was categorized as percentages of native vegetation, rural occupation and urban occupation. Statistical tests revealed negative bivariate correlations between functional dispersion and the proportion of native vegetation in the watershed. The results indicate that a higher percentage of rural or urban occupation is associated with increased functional dispersion. In the analyzes of trait composition, significant alterations were observed in response to urbanization while only the increase in herbivory responded to ruralization. As the area of native vegetation is reduced by urbanization, the trait composition changes, with reduced proportions of species with intolerance to hypoxia, migratory reproductive behavior, external fertilization, and subterminal mouth, and increased proportions of species with parental care, detritivory, internal fertilization, and an upper mouth. Therefore, fish species that have these specific characteristics are more likely to disappear from streams as urbanization progresses. In summary, urbanization was related to a greater change in the composition of functional traits than ruralization.

1984 ◽  
Vol 124 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Philip R. Yant ◽  
James R. Karr ◽  
Paul L. Angermeier

2015 ◽  
Vol 85 (1) ◽  
pp. 73-92 ◽  
Author(s):  
Joshuah S. Perkin ◽  
Keith B. Gido ◽  
Arthur R. Cooper ◽  
Thomas F. Turner ◽  
Megan J. Osborne ◽  
...  

2019 ◽  
Vol 70 (11) ◽  
pp. 1611 ◽  
Author(s):  
Xiaoyun Bai ◽  
Congcong Guo ◽  
Mamun Abdullah Al ◽  
Alan Warren ◽  
Henglong Xu

Multifunctional trait analysis is increasingly recognised as an effective tool for assessing ecosystem function and environmental quality. Here, a baseline study was performed at four depths (i.e. 1, 2, 3.5 and 5m) in Yellow Sea coastal waters of northern China in order to determine the optimal depth for bioassessment using biological traits of biofilm-dwelling ciliates. Community-weighted means (CWM) from functional traits system were used to summarise the trait distribution and functional diversity of ciliates among the four depths during a 1-month colonisation period. Functional trait distribution revealed a clear temporal variation among the four depths. In total, 3 of 17 functional traits (i.e. feeding type, body size and flexibility) showed significant temporal patterns. Bootstrapped averaging and permutational multivariate analysis of variance (PERMANOVA) tests demonstrated that the colonisation pattern of biofilm-dwelling ciliates as expressed by CWM at 1 and 2m differed significantly from those at 3.5 and 5m. Functional diversity indices showed lower variability at 1 and 2m than at 3.5 and 5m. These results suggest that 1 and 2m are the preferred sampling depths for bioassessment of marine water quality using biological traits of biofilm-dwelling ciliates.


Author(s):  
Katelyn B.S. King ◽  
Mary Tate Bremigan ◽  
Dana M Infante ◽  
Kendra Spence Cheruvelil

Stream and lake fishes are important economic and recreational resources that respond to alterations in their surrounding watersheds and serve as indicators of ecological stressors on aquatic ecosystems. Research suggests that fish species diversity is largely influenced by surface water connectivity, or the lack thereof; however, few studies consider freshwater connections and their effect on both lake and stream fish communities across broad spatial extents. We used fish data from 559 lakes and 854 streams from the midwestern/northeastern United States to examine the role of surface water connectivity on fish species richness and community composition. We found that although lakes and streams share many species, connectivity had a positive effect on species richness across lakes and streams and helped explain species composition. Taking an integrated approach that includes both lake and stream fish communities and connectivity among freshwaters helps inform scientific understanding of what drives variation in fish species diversity at broad spatial scales and can help managers who are faced with planning for state, regional, or national scale monitoring and restoration.


2020 ◽  
Vol 8 (4) ◽  
pp. 567 ◽  
Author(s):  
Stephanie Elferink ◽  
Uwe John ◽  
Stefan Neuhaus ◽  
Sylke Wohlrab

Dinoflagellates and diatoms are among the most prominent microeukaryotic plankton groups, and they have evolved different functional traits reflecting their roles within ecosystems. However, links between their metabolic processes and functional traits within different environmental contexts warrant further study. The functional biodiversity of dinoflagellates and diatoms was accessed with metatranscriptomics using Pfam protein domains as proxies for functional processes. Despite the overall geographic similarity of functional responses, abiotic (i.e., temperature and salinity; ~800 Pfam domains) and biotic (i.e., taxonomic group; ~1500 Pfam domains) factors influencing particular functional responses were identified. Salinity and temperature were identified as the main drivers of community composition. Higher temperatures were associated with an increase of Pfam domains involved in energy metabolism and a decrease of processes associated with translation and the sulfur cycle. Salinity changes were correlated with the biosynthesis of secondary metabolites (e.g., terpenoids and polyketides) and signal transduction processes, indicating an overall strong effect on the biota. The abundance of dinoflagellates was positively correlated with nitrogen metabolism, vesicular transport and signal transduction, highlighting their link to biotic interactions (more so than diatoms) and suggesting the central role of species interactions in the evolution of dinoflagellates. Diatoms were associated with metabolites (e.g., isoprenoids and carotenoids), as well as lysine degradation, which highlights their ecological role as important primary producers and indicates the physiological importance of these metabolic pathways for diatoms in their natural environment. These approaches and gathered information will support ecological questions concerning the marine ecosystem state and metabolic interactions in the marine environment.


Hydrobiologia ◽  
2010 ◽  
Vol 651 (1) ◽  
pp. 279-289 ◽  
Author(s):  
Fábio R. Silva ◽  
Efrem J. G. Ferreira ◽  
Cláudia P. de Deus

Sign in / Sign up

Export Citation Format

Share Document