scholarly journals Bone quality: what is it and how is it measured?

2006 ◽  
Vol 50 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Juliet Compston

Bone quality describes aspects of bone composition and structure that contribute to bone strength independently of bone mineral density. These include bone turnover, microarchitecture, mineralisation, microdamage and the composition of bone matrix and mineral. New techniques to assess these components of bone quality are being developed and should produce important insights into determinants of fracture risk in untreated and treated disease.

2021 ◽  
Vol 7 ◽  
Author(s):  
Fabio Massimo Ulivieri ◽  
Luca Rinaudo

For a proper assessment of osteoporotic fragility fracture prediction, all aspects regarding bone mineral density, bone texture, geometry and information about strength are necessary, particularly in endocrinological and rheumatological diseases, where bone quality impairment is relevant. Data regarding bone quantity (density) and, partially, bone quality (structure and geometry) are obtained by the gold standard method of dual X-ray absorptiometry (DXA). Data about bone strength are not yet readily available. To evaluate bone resistance to strain, a new DXA-derived index based on the Finite Element Analysis (FEA) of a greyscale of density distribution measured on spine and femoral scan, namely Bone Strain Index (BSI), has recently been developed. Bone Strain Index includes local information on density distribution, bone geometry and loadings and it differs from bone mineral density (BMD) and other variables of bone quality like trabecular bone score (TBS), which are all based on the quantification of bone mass and distribution averaged over the scanned region. This state of the art review illustrates the methodology of BSI calculation, the findings of its in reproducibility and the preliminary data about its capability to predict fragility fracture and to monitor the follow up of the pharmacological treatment for osteoporosis.


Author(s):  
Claudia Harper ◽  
Andrea L. Pattinson ◽  
Hamish A. Fernando ◽  
Jessica Zibellini ◽  
Radhika V. Seimon ◽  
...  

AbstractBackground:New evidence suggests that obesity is deleterious for bone health, and obesity treatments could potentially exacerbate this.Materials and methods:This narrative review, largely based on recent systematic reviews and meta-analyses, synthesizes the effects on bone of bariatric surgery, weight loss pharmaceuticals and dietary restriction.Results and conclusions:All three obesity treatments result in statistically significant reductions in hip bone mineral density (BMD) and increases in bone turnover relative to pre-treatment values, with the reductions in hip BMD being strongest for bariatric surgery, notably Roux-en Y gastric bypass (RYGB, 8%–11% of pre-surgical values) and weakest for dietary restriction (1%–1.5% of pre-treatment values). Weight loss pharmaceuticals (orlistat or the glucagon-like peptide-1 receptor agonist, liraglutide) induced no greater changes from pre-treatment values than control, despite greater weight loss. There is suggestive evidence that liraglutide may increase bone mineral content (BMC) – but not BMD – and reduce fracture risk, but more research is required to clarify this. All three obesity treatments have variable effects on spine BMD, probably due to greater measurement error at this site in obesity, suggesting that future research in this field could focus on hip rather than spine BMD. Various mechanisms have been proposed for BMD loss with obesity treatments, notably reduced nutritional intake/absorption and insufficient exercise, and these are potential avenues for protection against bone loss. However, a pressing outstanding question is whether this BMD reduction contributes to increased fracture risk, as has been observed after RYGB, and whether any such increase in fracture risk outweighs the risks of staying obese (unlikely).


2022 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Alicia R. Jones ◽  
Koen Simons ◽  
Susan Harvey ◽  
Vivian Grill

Individuals with primary hyperparathyroidism (PHPT) have reduced bone mineral density (BMD) according to dual X-ray absorptiometry at cortical sites, with relative sparing of trabecular BMD. However, fracture risk is increased at all sites. Trabecular bone score (TBS) may more accurately describe their bone quality and fracture risk. This study compared how BMD and TBS describe bone quality in PHPT. We conducted a retrospective cross-sectional study with a longitudinal component, of adults with PHPT, admitted to a tertiary hospital in Australia over ten years. The primary outcome was the TBS at the lumbar spine, compared to BMD, to describe bone quality and predict fractures. Secondary outcomes compared changes in TBS after parathyroidectomy. Of 68 included individuals, the mean age was 65.3 years, and 79% were female. Mean ± SD T-scores were −1.51 ± 1.63 at lumbar spine and mean TBS was 1.19 ± 0.12. Only 20.6% of individuals had lumbar spine BMD indicative of osteoporosis, while 57.4% of TBS were ≤1.20, indicating degraded architecture. There was a trend towards improved fracture prediction using TBS compared to BMD which did not reach statistical significance. Comparison of 15 individuals following parathyroidectomy showed no improvement in TBS.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (7) ◽  
pp. e1002745 ◽  
Author(s):  
Hou-Feng Zheng ◽  
Jon H. Tobias ◽  
Emma Duncan ◽  
David M. Evans ◽  
Joel Eriksson ◽  
...  

2020 ◽  
Vol 45 (5) ◽  
pp. 758-767
Author(s):  
Nadine Heimgartner ◽  
Nicole Graf ◽  
Diana Frey ◽  
Lanja Saleh ◽  
Rudolf P. Wüthrich ◽  
...  

Background: Low bone mineral density (BMD) represents a major risk factor for bone fractures in patients with chronic kidney disease (CKD) as well as after kidney transplantation. However, modalities to solidly predict patients at fracture risk are yet to be defined. Better understanding of bone turnover biomarkers (BTMs) may close this diagnostic gap. This study strives to correlate BTMs to BMD in kidney transplant recipients. Methods: Changes in BTMs – procollagen type I N-terminal propeptide (P1NP), bone-specific alkaline phosphatase (BSAP), β-isomer of the C-terminal telopeptide of type I collagen, and urine deoxypyridinoline/Cr – at the time of transplant and 3 months were correlated to changes in BMD measured by dual-energy X-ray absorptiometry at the time of transplant, 6, and 12 months, respectively. Half of the collective was treated with denosumab twice yearly in addition to the standard treatment with calcium and vitamin D. Results: Changes in bone formation markers BSAP and P1NP within 3 months showed a significant negative correlation to changes in BMD at the hip within 6 months in denosumab-naïve patients. This correlation was abrogated by denosumab treatment. Conclusions: Changes in BSAP and P1NP showed promise in short-term prediction of BMD. We suggest further trials expanding on the knowledge of these BTMs with assessment of fracture risk, sequential measurements of BTMs within the first 6 months, and the additional use of computed tomography to assess BMD.


2003 ◽  
Vol 9 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Rosemary A Hannon ◽  
Richard Eastell

Low bone mineral density is a strong risk factor for fractures in the older woman. Biochemical markers of bone turnover may predict fracture risk independently of bone mineral density. High levels of bone resorption markers are associated with increased risk of fracture in both retrospective and prospective studies, although the evidence for bone formation markers and fracture risk is equivocal. For example, the risk of fracture is increased up to two-fold in women with elevated levels of several markers of bone resorption. Prediction models have been developed to predict the 10–year risk of fracture using bone mineral density and biochemical markers of bone turnover and these could prove very useful in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document