scholarly journals Growth hormone secretion in response to glucagon stimulation test in healthy middle-aged men

2009 ◽  
Vol 53 (7) ◽  
pp. 853-858 ◽  
Author(s):  
Eduardo Micmacher ◽  
Roberto P. Assumpção ◽  
Renato G. Redorat ◽  
Luciana D. Spina ◽  
Ivan C. Cruz ◽  
...  

OBJECTIVE: To investigate the growth hormone (GH) response to glucagon stimulation test (GST) in a population of healthy men over 50 years old in comparison to insulin tolerance test (ITT), analysis of the spontaneous 24-hour GH profile and insulin-like growth factor 1 (IGF-I). METHODS: 27 healthy men aged between 51 and 65 years were tested. RESULTS: Using non-parametric correlation analysis, a positive correlation between GH peak after GST and mean IGF-I (r = 0.528; p = 0.005) was found, as well with GH peak in 24-hour profile (r = 0.494; p = 0.009). No correlation was found comparing GH peak after ITT with the same parameters. Ten subjects presented GH peak of less than 3.0 μg/L after GST, none confirmed in ITT. CONCLUSIONS: GH peak response to GST was lower than ITT, but it showed a positive correlation with mean IGF-I and also with GH peak in 24-hour profile. However, GST should not be used to differentiate organic growth hormone deficiency (GDH) from the expected decline on GH secretion due to aging.

2017 ◽  
Vol 30 (10) ◽  
Author(s):  
Cristina Meazza ◽  
Heba H. Elsedfy ◽  
Randa I. Khalaf ◽  
Fiorenzo Lupi ◽  
Sara Pagani ◽  
...  

AbstractBackground:α-Klotho is a transmembrane protein that can be cleaved and act as a circulating hormone (s-klotho). s-Klotho serum levels seem to reflect growth hormone (GH) secretory status. We investigated the role of s-klotho as a reliable marker of GH secretion in short children and the factors influencing its secretion.Methods:We enrolled 40 short Egyptian children (20 GH deficiency [GHD] and 20 idiopathic short stature [ISS]). They underwent a pegvisomant-primed insulin tolerance test (ITT) and were accordingly reclassified as 16 GHD and 24 ISS. The samples obtained before and 3 days after pegvisomant administration, prior to the ITT, were used for assaying insulin-like growth factor (IGF)-I and s-klotho.Results:IGF-I and s-klotho serum levels were not significantly different (p=0.059 and p=0.212, respectively) between GHD and ISS. After pegvisomant, a significant reduction in IGF-I and s-klotho levels was found in both groups. s-Klotho significantly correlated only with IGF-I levels in both groups.Conclusions:s-Klotho mainly reflects the IGF-I status and cannot be considered a reliable biomarker for GH secretion in children.


2021 ◽  
pp. 1-24
Author(s):  
Jan M. Wit ◽  
Sjoerd D. Joustra ◽  
Monique Losekoot ◽  
Hermine A. van Duyvenvoorde ◽  
Christiaan de Bruin

The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak (“GH neurosecretory dysfunction,” GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of <i>GH1</i> or <i>GHSR</i>) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0–3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to <i>GH1</i> variants) but less on the role of <i>GHSR</i> variants. Several genetic causes of (partial) GHI are known (<i>GHR</i>, <i>STAT5B</i>, <i>STAT3</i>, <i>IGF1</i>, <i>IGFALS</i> defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.


Author(s):  
Marion Kessler ◽  
Michael Tenner ◽  
Michael Frey ◽  
Richard Noto

AbstractBackground:The objective of the study was to describe the pituitary volume (PV) in pediatric patients with isolated growth hormone deficiency (IGHD), idiopathic short stature (ISS) and normal controls.Methods:Sixty-nine patients (57 male, 12 female), with a mean age of 11.9 (±2.0), were determined to have IGHD. ISS was identified in 29 patients (20 male, 9 female), with a mean age of 12.7 (±3.7). Sixty-six controls (28 female, 38 male), mean age 9.8 (±4.7) were also included. Three-dimensional (3D) magnetic resonance images with contrast were obtained to accurately measure PV.Results:There was a significant difference in the mean PV among the three groups. The IGHD patients had a mean PV 230.8 (±89.6), for ISS patients it was 286.8 (±108.2) and for controls it was 343.7 (±145.9) (p<0.001). There was a normal increase in PV with age in the ISS patients and controls, but a minimal increase in the IGHD patients.Conclusions:Those patients with isolated GHD have the greatest reduction in PV compared to controls and the patients with ISS fall in between. We speculate that a possible cause for the slowed growth in some ISS patients might be related to diminished chronic secretion of growth hormone over time, albeit having adequate pituitary reserves to respond acutely to GH stimulation. Thus, what was called neurosecretory GHD in the past, might, in some patients, be relative pituitary hypoplasia and resultant diminished growth hormone secretion. Thus, PV determinations by magnetic resonance imaging (MRI) could assist in the diagnostic evaluation of the slowly growing child.


2018 ◽  
Vol 50 (06) ◽  
pp. 462-468
Author(s):  
Sarah Thilmany ◽  
Leila Mchirgui ◽  
Chloé Brunelle ◽  
Véronique Beauloye ◽  
Dominique Maiter ◽  
...  

AbstractOur aim was to analyze a cohort of patients with childhood-onset growth hormone deficiency (GHD) to evaluate if there is some correlation between the response to GH treatment during childhood and adulthood, respectively. This was an observational retrospective monocentric cohort study of 47 patients treated with GH during childhood and adulthood. Changes in growth parameters during childhood were compared with the increase of IGF-I z-score and other indexes of GH response (body composition, lipid profile) after 1 year of treatment in adulthood. The only significant positive correlation was observed between final growth velocity during the last year of childhood GH treatment and increase in IGF-I z-score in GH-treated adults (r=0.592, p=< 0.01). No correlation was observed between growth-promoting effects of GH as child and metabolic changes induced by GH as adult. We also observed a negative correlation between weight at the end of childhood GH treatment and the IGF-I response during first year of treatment in adults (r=− 0.335, p <0.05). No significant positive correlation could be observed between the main parameters that evaluate response to GH treatment in children and adults. However, the final growth velocity, which may be considered as one of the main criteria of end of GH treatment in children, was identified as parameter that could predict future response to GH treatment in adulthood.


Author(s):  
Jan M. Wit ◽  
Wilma Oostdijk

In the five decades in which growth hormone has been prescribed for children with growth hormone deficiency (GHD) there has been definite progress, but on the other hand there is still insufficient evidence to answer many basic questions. From an evidence-based perspective the present situation with respect to growth hormone treatment for GHD is therefore far from optimal. First, the diagnosis GHD cannot be defined precisely, because there is a wide range of growth hormone secretion in normally growing individuals, which overlaps with the range observed in children clinically suspected of GHD. Furthermore, all test parameters available have serious drawbacks (1). Therefore, the term GHD stands for a heterogeneous group of congenital or acquired deficiencies (or apparent deficiency). Most patients have an idiopathic isolated GHD, but particularly in that subgroup retesting at the end of growth often shows a normal stimulated growth hormone peak. Of the acquired (organic) GHD, malignancies are the most frequent aetiology, but the incidence of traumatic brain injury may be underestimated.


Sign in / Sign up

Export Citation Format

Share Document