scholarly journals Estrogen receptors and function in the male reproductive system

2009 ◽  
Vol 53 (8) ◽  
pp. 923-933 ◽  
Author(s):  
Maria Fatima Magalhães Lazari ◽  
Thais Fabiana Gameiro Lucas ◽  
Fabiana Yasuhara ◽  
Gisele Renata Oliveira Gomes ◽  
Erica Rosanna Siu ◽  
...  

A substantial advance in our understanding on the estrogen signaling occurred in the last decade. Estrogens interact with two receptors, ESR1 and ESR2, also known as ERα and ERβ, respectively. ESR1 and ESR2 belong to the nuclear receptor family of transcription factors. In addition to the well established transcriptional effects, estrogens can mediate rapid signaling, triggered within seconds or minutes. These rapid effects can be mediated by ESRs or the G protein-coupled estrogen receptor GPER, also known as GPR30. The effects of estrogen on cell proliferation, differentiation and apoptosis are often mediated by growth factors. The understanding of the cross-talk between androgen, estrogen and growth factors signaling pathways is therefore essential to understand the physiopathological mechanisms of estrogen action. In this review we focused on recent discoveries about the nature of the estrogen receptors, and on the signaling and function of estrogen in the male reproductive system.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy S. Breton ◽  
William G. B. Sampson ◽  
Benjamin Clifford ◽  
Anyssa M. Phaneuf ◽  
Ilze Smidt ◽  
...  

AbstractThe SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2162
Author(s):  
Mohammad Taheri ◽  
Hamed Shoorei ◽  
Marcel E. Dinger ◽  
Soudeh Ghafouri-Fard

Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.


1999 ◽  
Vol 215 (2) ◽  
pp. 314-331 ◽  
Author(s):  
Tomoyuki Miyabayashi ◽  
Mark T Palfreyman ◽  
Ann E Sluder ◽  
Frank Slack ◽  
Piali Sengupta

Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4209-4217 ◽  
Author(s):  
Brenda Anguiano ◽  
Nuri Aranda ◽  
Guadalupe Delgado ◽  
Carmen Aceves

We characterized the enzymes that catalyze the deiodination of T4 to T3 in the male reproductive tract. Testis, epididymis (EPI), seminal vesicles, prostate, bulbourethral glands, spermatozoa, and semen were taken from sexually mature rats (300 g). Iodothyronine 5′-deiodinase (5′-D) activity was quantified by the radiolabeled-iodide-release method. 5′-D activity was 10-fold higher in EPI and semen than in the rest of the tissues. In EPI, semen, and prostate, the enzymatic activity was completely inhibited by 1 mm 6-n-propyl-2-thiouracil, whereas in the other tissues the inhibition was partial (50%). The high susceptibility to 6-n-propyl-2-thiouracil inhibition, a ping-pong kinetic pattern, and low cofactor (Michaelis Menten constant for dithiothreitol = 0.7 mm) and high substrate (Michaelis Menten constant for reverse T3 = 0.4 μm) requirements indicate that EPI 5′-D corresponds to type 1 deiodinase (D1). Real-time RT-PCR amplification of D1 mRNA in this tissue confirms this conclusion. The highest EPI D1 expression occurred at the onset of puberty and sexual maturity, and in the adult, this activity was more abundant in corpus and caput than in the caudal region. EPI D1 expression was elevated under conditions of hyperthyroidism and with addition of 17β-estradiol. Our data also showed a direct association between D1 and a functional epididymis marker, the neutral α-glucosidase enzyme, suggesting that local generation of T3 could be associated with the development and function of EPI and/or spermatozoa maturation. Further studies are necessary to analyze the possible physiological relevance of 5′-D in the male reproductive system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Li Pan ◽  
Jianliang Lv ◽  
Zhongwang Zhang ◽  
Yongguang Zhang

Atypical chemokine receptors (ACKRs) are a subclass of G protein-coupled receptors characterized by promiscuity of ligand binding and an obvious inability to signal after ligand binding. Although some discoveries regarding this family in Homo sapiens and other species have been reported in some studies, the evolution and function of multiple ACKR in mammals have not yet been clearly understood. We performed an evolutionary analysis of ACKR genes (ACKR1, ACKR2, ACKR3, and ACKR4) in mammals. Ninety-two full-length ACKR genes from 27 mammal species were retrieved from the Genbank and Ensemble databases. Phylogenetic analysis showed that there were four well-conserved subfamilies in mammals. Synteny analysis revealed that ACKR genes formed conserved linkage groups with their adjacent genes across mammalian species, facilitating the identification of ACKRs in as yet unannotated genome datasets. Analysis of the site-specific profiles established by posterior probability revealed the positive-selection sites to be distributed mainly in the ligand binding region of ACKR1. This study highlights the molecular evolution of the ACKR gene family in mammals and identifies the critical amino acid residues likely to be relevant to ligand binding. Further experimental verification of these findings may provide valuable information regarding the ACKR’s biochemical and physiological functions.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2115
Author(s):  
Adele Chimento ◽  
Arianna De Luca ◽  
Marta Claudia Nocito ◽  
Paola Avena ◽  
Davide La Padula ◽  
...  

Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.


2019 ◽  
Vol 280 (11) ◽  
pp. 1693-1705
Author(s):  
Luis M. Pardo ◽  
Fernando J. Zara ◽  
Marcela P. Riveros ◽  
Kurt Paschke ◽  
Katrin Pretterebner ◽  
...  

2003 ◽  
Vol 31 (3) ◽  
pp. 349-357 ◽  
Author(s):  
B Horard ◽  
JM Vanacker

The nuclear receptor family comprises ligand-dependent and orphan receptors. To the latter group belong the estrogen receptor-related receptors (ERRs) for which conflicting results have been published concerning the nature (constitutive or liganded) of their transcriptional activities. ERRs interfere in various ways, positively and negatively, with estrogen signaling. Moreover recent data analyzing ERR expression in human breast tumors have proposed ERRalpha and ERRgamma as prognostic markers of these cancers. The identification of modulators (positive or negative) of ERR activities would therefore be highly useful in our understanding of estrogen-related pathologies. The purpose of this review is to summarize our knowledge of the nature of ERR activities and progresses in identifying synthetic ERR modulators.


Sign in / Sign up

Export Citation Format

Share Document