scholarly journals Trends in antimicrobial resistance among clinical isolates of enterococci in a Brazilian tertiary hospital: a 4-year study

2011 ◽  
Vol 44 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Natália Conceição ◽  
Cristina da Cunha Hueb Barata de Oliveira ◽  
Paulo Roberto da Silva ◽  
Bárbara Godoi Melo Ávila ◽  
Adriana Gonçalves de Oliveira

INTRODUCTION: In the past two decades members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. This study prospectively analyzed the distribution of species and trends in antimicrobial resistance among clinical isolates of enterococci in a Brazilian tertiary hospital from 2006-2009. METHODS: Enterococcal species were identified by conventional biochemical tests. The antimicrobial susceptibility profile was performed by disk diffusion in accordance with the Clinical and Laboratory Standards Institute (CLSI). A screening test for vancomycin was also performed. Minimal inhibitory concentration (MIC) for vancomycin was determined using the broth dilution method. Molecular assays were used to confirm speciation and genotype of vancomycin-resistant enterococci (VRE). RESULTS: A total of 324 non-repetitive enterococcal isolates were recovered, of which 87% were E. faecalis and 10.8% E. faecium. The incidence of E. faecium per 1,000 admissions increased significantly (p < 0.001) from 0.3 in 2006 to 2.3 in 2009. The VRE rate also increased over time from 2.5% to 15.5% (p < 0.001). All VRE expressed high-level resistance to vancomycin (MIC >256µg/ mL) and harbored vanA genes. The majority (89.5%) of VRE belonged to E. faecium species, which were characteristically resistant to ampicillin and quinolones. Overall, ampicillin resistance rate increased significantly from 2.5% to 21.4% from 2006-2009. Resistance rates for gentamicin, chloramphenicol, tetracycline, and erythromycin significantly decreased over time, although they remained high. Quinolones resistance rates were high and did not change significantly over time. CONCLUSIONS: The data obtained show a significant increasing trend in the incidence of E. faecium resistant to ampicillin and vancomycin.

2001 ◽  
Vol 45 (6) ◽  
pp. 1721-1729 ◽  
Author(s):  
Gary V. Doern ◽  
Kristopher P. Heilmann ◽  
Holly K. Huynh ◽  
Paul R. Rhomberg ◽  
Stacy L. Coffman ◽  
...  

ABSTRACT A total of 1,531 recent clinical isolates of Streptococcus pneumoniae were collected from 33 medical centers nationwide during the winter of 1999–2000 and characterized at a central laboratory. Of these isolates, 34.2% were penicillin nonsusceptible (MIC ≥ 0.12 μg/ml) and 21.5% were high-level resistant (MIC ≥ 2 μg/ml). MICs to all beta-lactam antimicrobials increased as penicillin MICs increased. Resistance rates among non-beta-lactam agents were the following: macrolides, 25.2 to 25.7%; clindamycin, 8.9%; tetracycline, 16.3%; chloramphenicol, 8.3%; and trimethoprim-sulfamethoxazole (TMP-SMX), 30.3%. Resistance to non-beta-lactam agents was higher among penicillin-resistant strains than penicillin-susceptible strains; 22.4% of S. pneumoniae were multiresistant. Resistance to vancomycin and quinupristin-dalfopristin was not detected. Resistance to rifampin was 0.1%. Testing of seven fluoroquinolones resulted in the following rank order of in vitro activity: gemifloxacin > sitafloxacin > moxifloxacin > gatifloxacin > levofloxacin = ciprofloxacin > ofloxacin. For 1.4% of strains, ciprofloxacin MICs were ≥4 μg/ml. The MIC90s (MICs at which 90% of isolates were inhibited) of two ketolides were 0.06 μg/ml (ABT773) and 0.12 μg/ml (telithromycin). The MIC90 of linezolid was 2 μg/ml. Overall, antimicrobial resistance was highest among middle ear fluid and sinus isolates of S. pneumoniae; lowest resistance rates were noted with isolates from cerebrospinal fluid and blood. Resistant isolates were most often recovered from children 0 to 5 years of age and from patients in the southeastern United States. This study represents a continuation of two previous national studies, one in 1994–1995 and the other in 1997–1998. Resistance rates with S. pneumoniae have increased markedly in the United States during the past 5 years. Increases in resistance from 1994–1995 to 1999–2000 for selected antimicrobial agents were as follows: penicillin, 10.6%; erythromycin, 16.1%; tetracycline, 9.0%; TMP-SMX, 9.1%; and chloramphenicol, 4.0%, the increase in multiresistance was 13.3%. Despite awareness and prevention efforts, antimicrobial resistance with S. pneumoniae continues to increase in the United States.


Author(s):  
Seyed Hossein Mousavi ◽  
Hadi Peeri-Doghaheh ◽  
Behnam Mohammadi-Ghalehbin ◽  
Roghayeh Teimourpour ◽  
Dadras Maleki ◽  
...  

Background and Objectives: Nowadays, high-level aminoglycosides and ampicillin resistant Enterococcus species are among the most common causes of nosocomial infections. The present study was conducted to determine the prevalence of high-level resistance to aminoglycosides and ampicillin among clinical isolates of Enterococcus species in Ardabil, Iran. Materials and Methods: In this cross–sectional study, a total of 111 Enterococcus species were collected from different clinical specimens between 2013 and 2015. Enterococcus species were identified using standard phenotypic and genotypic methods. BHI agar screen and agar dilution methods were used for detection of high-level gentamicin and streptomycin resistance (HLGR and HLSR) and minimal inhibitory concentration (MIC) of ampicillin, respectively. Results: Of 111 clinical isolates, 59 (53.2%) and 25 (22.5%) isolates were E. faecalis and E. faecium, respectively, based on the PCR results. Totally, 60.3% and 56.7% of isolates were HLGR and HLSR, respectively, as well as 51.35% were HLGR plus HLSR. Among HLGR isolates, 36 (61.01%), 18 (72%) and 13 (48.14%) were E. faecium, E. faecalis and non-faecalis non-faecium species, respectively. Among HLSR isolates, 33 (55.93%), 16 (64%) and 14 (51.85%) were E. faecalis, E. faecium and non-faecalis non-faecium species, respectively. All HLGR isolates contained aac(6´)Ie-aph(2″)Ia gene. Overall, the prevalence of high-level ampicillin resistance among Enterococcus species was 17.1%. For E. faecalis, E. faecium and non-faecalis non-faecium species, ampicillin resistance rates were as follows: 11 (40.74%), 7 (28%) and 1 (1.69%), respectively. For aminoglycoside antibiotics, the resistance rate was significantly higher in E. faecium isolates and for ampicillin it was higher in E. faecalis isolates. Conclusion: The frequency of high-level aminoglycoside resistant enterococcal isolates in our hospital was high and significant ampicillin resistance was noticed. This would require routine testing of enterococcal isolates for HLAR and ampicillin susceptibility.


2009 ◽  
Vol 58 (8) ◽  
pp. 1086-1091 ◽  
Author(s):  
Yagang Chen ◽  
Borui Pi ◽  
Hua Zhou ◽  
Yunsong Yu ◽  
Lanjuan Li

The susceptibility to triclosan of 732 clinical Acinetobacter baumannii isolates obtained from 25 hospitals in 16 cities in China from December 2004 to December 2005 was screened by using an agar dilution method. Triclosan MICs ranged between 0.015 and 16 mg l−1, and the MIC90 was 0.5 mg l−1, lower than the actual in-use concentration of triclosan. Twenty triclosan-resistant isolates (MICs ≥1 mg l−1) were characterized by antibiotic susceptibility, clonal relatedness, fabI mutation, fabI expression, and efflux pump phenotype and expression to elucidate the resistance mechanism of A. baumannii to triclosan. The resistance rates of triclosan-resistant isolates to imipenem, levofloxacin, amikacin and tetracycline were higher than those of triclosan-sensitive isolates. Triclosan resistance was artificially classified as low level (MICs 1–2 mg l−1) or high level (MICs ≥4 mg l−1). High-level triclosan resistance could be explained by a Gly95Ser mutation of FabI, whilst wild-type fabI was observed to be overexpressed in low-level resistant isolates. Active efflux did not appear to be a major reason for acquired triclosan resistance, but acquisition of resistance appeared to be dependent on a background of intrinsic triclosan efflux.


2013 ◽  
Vol 62 (5) ◽  
pp. 748-753 ◽  
Author(s):  
Ji-Young Rhee ◽  
Ji Young Choi ◽  
Myung-Jin Choi ◽  
Jae-Hoon Song ◽  
Kyong Ran Peck ◽  
...  

One hundred and twenty-one isolates of Stenotrophomonas maltophilia complex were collected from seven Korean hospitals. Species and groups were identified using partial gyrB gene sequences and antimicrobial susceptibility testing was performed using a broth microdilution method. Based on partial gyrB gene sequences, 118 isolates were identified as belonging to S. maltophilia complex, including S. maltophilia, S. pavanii, Pseudomonas beteli, P. geniculata and P. hibisciola. The S. maltophilia isolates were further divided into three groups, I to III. S. maltophilia groups II and III were clustered into clade A with S. pavanii and P. beteli; S. maltophilia group I was clustered into clade B with P. geniculata and P. hibisciola. For all S. maltophilia complex isolates, the resistance rate to trimethoprim/sulfamethoxazole (TMP/SMX) was very high (30.5 %). Antimicrobial resistance rates varied among species or groups of S. maltophilia complex. Isolates of clade A showed significantly lower antimicrobial resistance rates than those of clade B; while 25 % of clade A isolates were multidrug resistant, 46 % of clade B isolates were multidrug resistant (P = 0.001). The finding of high antimicrobial resistance rates, particularly to TMP/SMX, among S. maltophilia complex isolates from Korea, and the existence of distinct groups among the isolates, with differences in antimicrobial resistance rates, suggests consideration of alternative agents to TMP/SMX to treat S. maltophilia infections and indicates the importance of accurate identification for appropriate selection of treatment options.


2021 ◽  
Vol 16 (1) ◽  
pp. 54-63
Author(s):  
A. V. Fedorova ◽  
G. A. Klyasova ◽  
I. N. Frolova ◽  
S. A. Khrulnova ◽  
A. V. Vetokhina ◽  
...  

Objective: to determine antimicrobial resistance of Enterococcus faecium and Enterococcus faecalis isolated from blood culture of hematological patients during different study periods.Materials and methods. Antimicrobial susceptibility of Enterococcus spp., collected as part of the multicenter study was tested by the broth microdilution method (USA Clinical and Laboratory Standards Institute (CLSI), 2018), to daptomycin by Etest (bioMeriéux, France). High-level gentamicin resistance (HLGR) and high-level streptomycin resistance (HLSR) was performed by the agar dilution method (CLSI (Oxoid, UK), 2018).Results. The susceptibility of 366 E. faecium (157 in 2002-2009 and 209 in 2010-2017) and 86 E. faecalis (44 in 20022009 and 42 in 2010-2017) was studied. In the second study period (2010-2017) the rise of vancomycin-resistant E. faecium (VREF) increased from 8.3 % to 23.4 % (p = 0.0001), and two linezolid-resistant (LREF) were identified. All VREF and LREF remained susceptible to daptomycin and tigecycline. The rate of susceptible to tetracycline E. faecium remained the same (73.9 and 74.6 %), and an increase in susceptibility to chloramphenicol (74.5 and 82.3 %) was observed. Susceptibility of E. faecium to tetracycline was detected with almost the same rate and in a part of isolates, the increase of susceptibility to chloramphenicol was registered during the analyzed periods. The rise of E. faecium susceptible to HLGR and HLSR has increased significantly in 2010-2017 compared to 2002-2009. Erythromycin, levofloxacin, ampicillin and penicillin had the least activity against E. faecium (less than 5 %).All E. faecalis were susceptible to tigecycline, linezolid, and teicoplanin. Only one of E. faecalis had intermediate resistance to vancomycin. High susceptibility to ampicillin in E. faecalis remained unchanged (97.7 and 97.6 %, respectively). In the second period of the study the rise of susceptible E. faecalis decreased significantly to penicillin (from 97.7 % to 76.2 %), to levofloxacin (from 59.1 % to 31 %), to HLSR (from 52.3 % до 31 %), and to HLGR (from 47.7 % to 26.2 %), remained unchanged to chloramphenicol (52.3 % and 50 %) and was minimal to erythromycin and tetracycline.Conclusion. The study demonstrated higher rates of antibiotic resistance among E. faecium, which consisted of an increase in VREF and the appearance of linezolid-resistant strains. High susceptibility to ampicillin remained in E. faecalis, but there was an increase in resistance to penicillin and aminoglycosides.


2016 ◽  
Vol 10 (03) ◽  
pp. 245-253 ◽  
Author(s):  
Hafeza Aftab ◽  
Muhammad Miftahussurur ◽  
Phawinee Subsomwong ◽  
Faruque Ahmed ◽  
AK Azad Khan ◽  
...  

Introduction: The most recent study to report Helicobacter pylori antibiotic resistance rates in Bangladesh was published 15 years ago and did not include levofloxacin. We therefore aimed to determine the current antibiotic susceptibility of H. pylori to amoxicillin, clarithromycin, metronidazole, tetracycline and levofloxacin in Bangladesh. Methodology: This study included 133 consecutive patients who underwent endoscopy examination at Dhaka Medical College in November 2014. The serial two-fold agar dilution method was used to determine the minimum inhibitory concentrations of the five antibiotics. Results: Among 56 cultured strains, H. pylori showed high rates of resistance to clarithromycin and metronidazole (39.3% and 94.6%, respectively). Moreover, levofloxacin showed an emerging antimicrobial resistance pattern (66.1%), which was higher in patients with gastritis than that in those with peptic ulcers (p = 0.02). The resistance rate of levofloxacin was significantly higher in patients living in Dhaka city compared to those living in the village (p = 0.049). However, amoxicillin and tetracycline resistance rates were very low. Resistance to both metronidazole and levofloxacin was most commonly observed. Conclusions: The rates of resistance to clarithromycin, metronidazole, and levofloxacin were high in Bangladesh, which suggests that triple therapy based on these drugs may not be useful as first-line therapies in Bangladesh. Alternative strategies such as furazolidone-based triple therapy, bismuth-based quadruple therapies, or sequential therapy may be more effective for patients in in Bangladesh.


2001 ◽  
Vol 126 (2) ◽  
pp. 197-204 ◽  
Author(s):  
N. KOBAYASHI ◽  
MD. MAHBUB ALAM ◽  
Y. NISHIMOTO ◽  
S. URASAWA ◽  
N. UEHARA ◽  
...  

Aminoglycoside modifying enzymes (AMEs) are major factors which confer aminoglycoside resistance on bacteria. Distribution of genes encoding seven AMEs was investigated by multiplex PCR for 279 recent clinical isolates of enterococci derived from a university hospital in Japan. The aac(6′)-aph(2″), which is related to high level gentamicin resistance, was detected at higher frequency in Enterococcus faecalis (42·5 %) than in Enterococcus faecium (4·3 %). Almost half of E. faecalis and E. faecium isolates possessed ant(6)-Ia and aph(3′)-IIIa. The profile of AME gene(s) detected most frequently in individual strains of E. faecalis was aac(6′)-aph(2″)+ant(6)-Ia+aph(3′)-IIIa, and isolates with this profile showed high level resistance to both gentamicin and streptomycin. In contrast, AME gene profiles of aac(6′)-Ii+ant(6)-Ia+aph(3′)-IIIa, followed by aac(6′)-Ii alone, were predominant in E. faecium. Only one AME gene profile of ant(6)-Ia+aph(3′)-IIIa was found in Enterococcus avium. The ant(4′)-Ia and ant(9)-Ia, which have been known to be distributed mostly among Staphylococcus aureus strains, were detected in a few enterococcal strains. An AME gene aph(2″)-Ic was not detected in any isolates of the three enterococcal species. These findings indicated a variety of distribution profiles of AME genes among enterococci in our study site.


2016 ◽  
Vol 145 (2) ◽  
pp. 386-396 ◽  
Author(s):  
C. HORNER ◽  
L. UTSI ◽  
L. COOLE ◽  
M. DENTON

SUMMARYWe investigated the epidemiology and characterization of isolates of Staphylococcus aureus within the Yorkshire and Humber (YH) region in the UK. In July 2015, each laboratory within YH (n = 14) was assigned two consecutive days during which all clinical isolates of S. aureus were collected. Isolates were tested for antibiotic susceptibilities and the presence of genes encoding methicillin resistance (mecA and mecC), Panton–Valentine leukocidin (PVL) (lukS-PV), and efflux-mediated chlorhexidine resistance (qacA); isolates were also characterized by spa-types. Minimum inhibitory concentrations (MICs) to chlorhexidine were determined by the broth dilution method. Of 520 isolates collected, 6·2% were methicillin-resistant S. aureus (MRSA, all mecA-positive) and mupirocin resistance was low [0·8%, 95% confidence interval (CI) 0·3–2·0] and only found in MRSA. Carriage of the qacA gene was identified in 1·7% (95% CI 0·8–3·3) of isolates and 3·5% (95% CI 2·2–5·4) had a chlorhexidine MIC of 4 mg/l. The PVL gene was infrequent (3·7%, 95% CI 2·4–5·6). Genotyping identified 234 spa-types that mapped to 22 clonal complexes. Comparison of these current data with previous work suggest that the widespread use of staphylococcal decolonization regimens over the past decade or more has not had an adverse impact on resistance rates, PVL carriage or the prevalence of specific S. aureus lineages.


Sign in / Sign up

Export Citation Format

Share Document