Distinct groups and antimicrobial resistance of clinical Stenotrophomonas maltophilia complex isolates from Korea

2013 ◽  
Vol 62 (5) ◽  
pp. 748-753 ◽  
Author(s):  
Ji-Young Rhee ◽  
Ji Young Choi ◽  
Myung-Jin Choi ◽  
Jae-Hoon Song ◽  
Kyong Ran Peck ◽  
...  

One hundred and twenty-one isolates of Stenotrophomonas maltophilia complex were collected from seven Korean hospitals. Species and groups were identified using partial gyrB gene sequences and antimicrobial susceptibility testing was performed using a broth microdilution method. Based on partial gyrB gene sequences, 118 isolates were identified as belonging to S. maltophilia complex, including S. maltophilia, S. pavanii, Pseudomonas beteli, P. geniculata and P. hibisciola. The S. maltophilia isolates were further divided into three groups, I to III. S. maltophilia groups II and III were clustered into clade A with S. pavanii and P. beteli; S. maltophilia group I was clustered into clade B with P. geniculata and P. hibisciola. For all S. maltophilia complex isolates, the resistance rate to trimethoprim/sulfamethoxazole (TMP/SMX) was very high (30.5 %). Antimicrobial resistance rates varied among species or groups of S. maltophilia complex. Isolates of clade A showed significantly lower antimicrobial resistance rates than those of clade B; while 25 % of clade A isolates were multidrug resistant, 46 % of clade B isolates were multidrug resistant (P = 0.001). The finding of high antimicrobial resistance rates, particularly to TMP/SMX, among S. maltophilia complex isolates from Korea, and the existence of distinct groups among the isolates, with differences in antimicrobial resistance rates, suggests consideration of alternative agents to TMP/SMX to treat S. maltophilia infections and indicates the importance of accurate identification for appropriate selection of treatment options.

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 74
Author(s):  
Yanyu Pan ◽  
Bin Hu ◽  
Xiangning Bai ◽  
Xi Yang ◽  
Lijiao Cao ◽  
...  

Non-O157 Shiga toxin-producing Escherichia coli (STEC) is an important pathogen that can cause zoonotic diseases. To investigate the antimicrobial resistance of STEC in China, non-O157 STEC isolates, recovered from domestic animals and humans from 12 provinces, were analyzed using antimicrobial susceptibility testing and whole genome characterization. Out of the 298 isolates tested, 115 strains showed resistance to at least one antimicrobial and 85 strains showed multidrug resistance. The highest resistance rate was to tetracycline (32.6%), followed by nalidixic acid (25.2%) and chloramphenicol and azithromycin (both 18.8%). However, imipenem and meropenem were effective against all isolates. Antimicrobial resistance patterns varied among strains from different sources. Strains from pig, sheep, humans, and cattle showed resistance rates of 100.0%, 46.9%, 30.3%, and 6.3% to one or more antimicrobials, respectively. Forty-three genes related to 11 antimicrobial classes were identified among these strains. The colistin-resistance gene mcr was only carried by strains from pigs. A new fosfomycin-resistant gene, fosA7, was detected in strains from humans, cattle, and sheep. Whole genome phylogenetic analysis showed that strains from the four sources were genetically diverse and scattered throughout the phylogenetic tree; however, some strains from the same source had a tendency to cluster closely. These results provide a reference to monitor the emergence and spread of multidrug resistant STEC strains among animals and humans. Furthermore, with a better understanding of antimicrobial genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2000 ◽  
Vol 44 (10) ◽  
pp. 2777-2783 ◽  
Author(s):  
P. L. Winokur ◽  
A. Brueggemann ◽  
D. L. DeSalvo ◽  
L. Hoffmann ◽  
M. D. Apley ◽  
...  

ABSTRACT Salmonella spp. are important food-borne pathogens that are demonstrating increasing antimicrobial resistance rates in isolates obtained from food animals and humans. In this study, 10 multidrug-resistant, cephalosporin-resistant Salmonellaisolates from bovine, porcine, and human sources from a single geographic region were identified. All isolates demonstrated resistance to cephamycins and extended-spectrum cephalosporins as well as tetracycline, chloramphenicol, streptomycin, and sulfisoxazole. Molecular epidemiological analyses revealed eight distinct chromosomal DNA patterns, suggesting that clonal spread could not entirely explain the distribution of this antimicrobial resistance phenotype. However, all isolates encoded an AmpC-like β-lactamase, CMY-2. Eight isolates contained a large nonconjugative plasmid that could transformEscherichia coli. Transformants coexpressed cephalosporin, tetracycline, chloramphenicol, streptomycin, and sulfisoxazole resistances. Plasmid DNA revealed highly related restriction fragments though plasmids appeared to have undergone some evolution over time. Multidrug-resistant, cephalosporin-resistant Salmonellaspp. present significant therapeutic problems in animal and human health care and raise further questions about the association between antimicrobial resistance, antibiotic use in animals, and transfer of multidrug-resistant Salmonella spp. between animals and man.


2018 ◽  
Vol 85 (1_suppl) ◽  
pp. S20-S23
Author(s):  
Carlo Tascini

Antibiotic stewardship: a milestone in everyday clinical practice Infectious diseases caused by multi-resistant pathogens are increasing worldwide and are challenging for clinicians, also in urological setting. The alarming situation is worsened by the limited perspective of new antibiotic developments. Several authors demonstrated that in Italy we have alarming data about resistance rates: in Campania about 58% of Escherichia coli are resistant to fluroquinolones, as 46% to sulfamethoxazole-trimethoprim. On the other hand, the resistance rate against fosfomycin is still low less than 5%. More alarming data are reported about Klebsiella pneumoniae: resistance rate to flurquinolones 65% and 58% to sulfamethoxazole-trimethoprim. A continuing uncritical, non-guideline-conform and overuse of antibiotics leads to selection of multidrug-resistant pathogens, which can colonize patients and make the treatment a real challenge. A revision of our approach to urinary tract infections at the light of antibiotic stewardiship principles are urgently required, in particular starting from the everyday clinical practice.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 660
Author(s):  
Xuebin Xu ◽  
Silpak Biswas ◽  
Guimin Gu ◽  
Mohammed Elbediwi ◽  
Yan Li ◽  
...  

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.


2012 ◽  
Vol 56 (7) ◽  
pp. 3989-3991 ◽  
Author(s):  
Emilio Pérez-Trallero ◽  
José M. Marimón ◽  
Marta Alonso ◽  
María Ercibengoa ◽  
José M. García-Arenzana

ABSTRACTChanges in the antimicrobial susceptibility ofStreptococcus pneumoniaecausing otitis media were studied in 916 isolates from children <5 years old between 1999 and 2010 in a region of northern Spain. The rate of antimicrobial resistance decreased between the period before the introduction of the heptavalent pneumococcal conjugate vaccine (from 1999 to 2001) and the period from 2005 to 2007. However, in 2008 to 2010, resistance rates increased again due to the spread of serotype 19A, especially the multidrug-resistant ST320 and ST276 clones.


2020 ◽  
Vol 14 (1) ◽  
pp. 98-106
Author(s):  
Mahmoud M. Tawfick ◽  
Hamada F. Rady ◽  
Mervat I. El-Borhamy ◽  
Anwar D. Maraqa

Background: Acinetobacter baumannii is one of the most challenging multidrug-resistant (MDR) nosocomial pathogens worldwide. Aminoglycosides are used for the treatment of A. baumannii infections, however, resistance to aminoglycosides is currently emerging, limiting therapeutic choices. Objective: In this study, the prevalence of aminoglycoside resistance and plasmid-mediated mechanisms of aminoglycoside resistance were investigated in A. baumannii clinical isolates collected from ICU patients at a tertiary care hospital in Egypt. Methods: The automated Vitek 2 system was used to identify A. baumannii species and determination of the antimicrobial susceptibility pattern. The identification of A. baumannii was confirmed by the detection of the blaOXA-51-like gene intrinsic to this species. Minimum Inhibitory Concentration (MIC) of gentamicin was determined using E-test following the CLSI breakpoints. Isolates were screened for the prevalence and diversity of the plasmid-carried aminoglycoside-modifying enzymes encoding genes aacC1, aadA1, aadB and aphA6. For genetic diversity analysis, the ERIC-PCR method was performed. Results: All A. baumannii isolates were MDR with high resistance rates to tested antimicrobials. The resistance rate to gentamicin was 92.9% with elevated MICs (≥ 32 μg/mL). The gentamicin-resistant isolates harboured one or more of the studied genes with the prevalence of aphA6 (81%). ERIC-based genotyping revealed that there was no evidence of A. baumannii clonal dissemination among isolates. Conclusion: The study concluded that MDR A. baumannii isolates were highly resistant to gentamicin. The plasmid-carried aminoglycoside-modifying enzymes encoding genes were disseminated among isolates with the AphA6 gene, which was the most prevalent one. The acquisition of more than one aminoglycoside resistance gene was associated with an elevated MIC of gentamicin. Thus, regular surveillance studies of the emerging resistance to antimicrobials and strict measures to control the dissemination of resistance determinants genes are warranted.


Author(s):  
Ngan Ly Hoang Nguyen ◽  
Trang Thi Phuong Phan ◽  
Nguyen Kim Thi Quyen

The antimicrobial resistance profile of extended-spectrumb -lactamase (ESBL) producing E. coli has been continuously changed in recent years in Vietnam and wordwide. A number of studies recently found that the prevalences of ESBL-producing E. coli decreased in Vietnam from 2016 to 2017 compared with those in previous years. The purpose of this study was to determine the prevalence and antimicrobial profile of ESBL-producing E. coli isolated from clinical specimens in Binh Dan hospital and from healthy individuals at Ho Chi Minh City in 2018. The results showed that the prevalence of ESBL-producing E. coli isolated from healthy individuals in 2018 and 2017 were nearly equal. The prevalence increased from 14.9% in 2017 up to 19.1% in 2018. The prevalence of ESBL-producing E. coli isolated from healthy individuals in Ho Chi Minh City was lower than that in other parts of Viet Nam. The prevalence of ESBL-producing E. coli isolated from clinical pecimens in Binh Dan hospital (22.25%) was lower than those in some other hospitals but higher compared with it from healthy individuals (19.1%). All of the ESBL-producing isolates were multidrug resistant and high resistance to aminoglycoside or quinolone. Imipenem and fosfomycin have still be considered as the treatment of choice against ESBL- producer infections. High resistance rate of E. coli isolated from blood specimens to imipenem was found in the study.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S285-S285
Author(s):  
Hyeri Seok ◽  
Ji Hoon Jeon ◽  
Hee Kyoung Choi ◽  
Won Suk Choi ◽  
Dae Won Park ◽  
...  

Abstract Background Fosfomycin is one of the antibiotics that may be a candidate for the next-generation antimicrobial agents againt multidrug-resistant bacteria. To date, it is known that the resistance rate is not high for Escherichia coli. However, it is necessary to update the fosfomycin resistance rates in E. coli according to the studies that extended spectrum β-lactamase (ESBL) producing E. coli strains are highly resistance to fosfomycin. We evaluated the resistance rate of fosfomycin, the resistant mechanism of fosfomycin in E. coli, and the activity of fosfomycin against susceptible and resistant strains of E. coli. Methods A total of 283 clinical isolates was collected from patients with Escherichia coli species during the period of January 2018 to June 2018, in three tertiary hospitals of Republic of Korea. In vitro antimicrobial susceptibility tests were performed in all E. coli isolates using the broth microdilution method according to the Clinical and Laboratory Standard Institute (CLSI). Multilocus sequence typing (MLST) of the Oxford scheme was conducted to determine the genotypes of E. coli isolated. Fosfomycin genes were investigated for all fosfomycin-resistant E. coli strains. Results The overall resistance rate to fosfomycin was 10.2%, compared with 53.4%, 46.3%, 41.3%, 31.1%, 10.6%, 2.5%, and 2.1% for ciprofloxacin, cefixime, cefepime, piperacillin/tazobactam, colistin, ertapenem, and amikacin, respectively. The 29 fosfomycin-resistant isolates did not show a clonal pattern on the phylogenetic tree. MurA and glp genes were identified in all strains. FosA3 were identified in two strains and uhp gene were identified in 4 strains. In time-kill curve studies, fosfomycin was more bactericidal than cefixime against all sensitive E. coli strain. Morever, fosfomycin was more bactericidal than piperacillin/tazobactam against ESBL-producing E. coli strain. Conclusion The resistant rate of fosfomycin to E. coli is still low. Fosfomycin was active against E. coli including ESBL producing strains. Disclosures All authors: No reported disclosures.


2011 ◽  
Vol 44 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Natália Conceição ◽  
Cristina da Cunha Hueb Barata de Oliveira ◽  
Paulo Roberto da Silva ◽  
Bárbara Godoi Melo Ávila ◽  
Adriana Gonçalves de Oliveira

INTRODUCTION: In the past two decades members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. This study prospectively analyzed the distribution of species and trends in antimicrobial resistance among clinical isolates of enterococci in a Brazilian tertiary hospital from 2006-2009. METHODS: Enterococcal species were identified by conventional biochemical tests. The antimicrobial susceptibility profile was performed by disk diffusion in accordance with the Clinical and Laboratory Standards Institute (CLSI). A screening test for vancomycin was also performed. Minimal inhibitory concentration (MIC) for vancomycin was determined using the broth dilution method. Molecular assays were used to confirm speciation and genotype of vancomycin-resistant enterococci (VRE). RESULTS: A total of 324 non-repetitive enterococcal isolates were recovered, of which 87% were E. faecalis and 10.8% E. faecium. The incidence of E. faecium per 1,000 admissions increased significantly (p < 0.001) from 0.3 in 2006 to 2.3 in 2009. The VRE rate also increased over time from 2.5% to 15.5% (p < 0.001). All VRE expressed high-level resistance to vancomycin (MIC >256µg/ mL) and harbored vanA genes. The majority (89.5%) of VRE belonged to E. faecium species, which were characteristically resistant to ampicillin and quinolones. Overall, ampicillin resistance rate increased significantly from 2.5% to 21.4% from 2006-2009. Resistance rates for gentamicin, chloramphenicol, tetracycline, and erythromycin significantly decreased over time, although they remained high. Quinolones resistance rates were high and did not change significantly over time. CONCLUSIONS: The data obtained show a significant increasing trend in the incidence of E. faecium resistant to ampicillin and vancomycin.


Sign in / Sign up

Export Citation Format

Share Document