scholarly journals Microbiological and biochemical properties of an agricultural Mexican soil amended with sewage sludge

2012 ◽  
Vol 36 (5) ◽  
pp. 1646-1655 ◽  
Author(s):  
Renato Armenta ◽  
Rocio Vaca ◽  
Jorge Lugo ◽  
Pedro del Aguila

The application of sewage sludge is a concern because it may affect the quality of organic matter and microbiological and biochemical soil properties. The effects of surface application of sewage sludge to an agricultural soil (at 18 and 36 t ha-1 dry basis) were assessed in one maize (Zea mays L.) growing season. The study evaluated microbial biomass, basal respiration and selected enzymatic activities (catalase, urease, acid and alkaline phosphatase, and β-glucosidase) 230 days after sewage sludge application and infrared spectroscopy was used to assess the quality of dissolved organic matter and humic acids. Sewage sludge applications increased the band intensity assigned to polysaccharides, carboxylic acids, amides and lignin groups in the soil. The organic matter from the sewage sludge had a significant influence on the soil microbial biomass; nevertheless, at the end of the experiment the equilibrium of the soil microbial biomass (defined as microbial metabolic quotient, qCO2) was recovered. Soil urease, acid and alkaline phosphatase activity were strongly influenced by sewage sludge applications.

Soil Research ◽  
2011 ◽  
Vol 49 (7) ◽  
pp. 582 ◽  
Author(s):  
D. V. Murphy ◽  
W. R. Cookson ◽  
M. Braimbridge ◽  
P. Marschner ◽  
D. L. Jones ◽  
...  

The quantity and/or quality of soil organic matter (SOM) and its fractions regulate microbial community composition and associated function. In this study an established, replicated agricultural systems trial in a semi-arid environment was used to test: (i) whether agricultural systems which have increased plant residue inputs increase the amount of labile SOM relative to total SOM, or change the quality of SOM fractions; and (ii) whether the size or quality of OM fractions is most strongly linked to the size, activity, functional diversity, and community structure of the soil microbial biomass. Soil (0–50 mm) was collected following 5 years of continuous wheat, crop rotation, crop–pasture rotation, annual pasture, or perennial pasture. Pastures were grazed by sheep. Direct drilling and non-inversion tillage techniques were compared in some cropping systems. Total carbon (C) increased with the proportion of pasture as a result of increased SOM inputs into these systems; land use also significantly affected SOM fractions and their chemical and physical nature. While the size, function, and structure of the soil microbial community were somewhat related to total soil C, they were better correlated with SOM fractions. The C : nitrogen (N) ratio of light fraction organic matter could be used to predict the amount of potentially mineralisable N in soil, while the C : N ratio of total SOM could not. Measurement of bacterial community structure (using denaturing gradient gel electrophoresis) significantly discriminated between land uses, while community-level physiological profiles revealed fewer differences. Overall, our findings support the premise that labile fractions of SOM are more strongly related to microbial community structure and function than is total SOM.


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


2018 ◽  
Vol 37 (4) ◽  
pp. 1197-1207 ◽  
Author(s):  
Monika Mierzwa-Hersztek ◽  
Krzysztof Gondek ◽  
Agnieszka Klimkowicz-Pawlas ◽  
Agnieszka Baran ◽  
Tomasz Bajda

PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0216730 ◽  
Author(s):  
Domenico Paolo Di Lonardo ◽  
Wietse de Boer ◽  
Hans Zweers ◽  
Annemieke van der Wal

2018 ◽  
Vol 2 ◽  
pp. 96-101
Author(s):  
Dil Kumar Limbu ◽  
Madan Koirala

The soil microbial biomass carbon to soil organic carbon ratio is a useful measure to monitor soil organic matter and serves as a sensitive index than soil organic carbon alone. Thus, the objective of this study is to identify and quantify the present status of ratio of soil microbial biomass carbon to soil organic carbon in Himalayan rangeland and to make recommendations for enhancing balance between microbial carbon and organic carbon of the soil. To meet the aforementioned objective, a field study was conducted from 2011 to 2013 following the Walkley-Black, Chromic acid wet oxidation method, and chloroform fumigation method for analysis of microbial carbon and organic carbon respectively. The study showed that the heavily grazed plot had significantly less value of ratio than occasionally grazed and ungrazed plots. The ratio was significantly high on legume seeding plot compared to nonlegume plot, but the ratio was independent of soil depth. Soil microbial biomass appeared to be more responsive than soil organic matter.


2015 ◽  
Vol 39 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Lívia Gabrig Turbay Rangel-Vasconcelos ◽  
Daniel Jacob Zarin ◽  
Francisco de Assis Oliveira ◽  
Steel Silva Vasconcelos ◽  
Cláudio José Reis de Carvalho ◽  
...  

Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.


Sign in / Sign up

Export Citation Format

Share Document