scholarly journals Soil physical properties and grape yield influenced by cover crops and management systems

2013 ◽  
Vol 37 (5) ◽  
pp. 1352-1360 ◽  
Author(s):  
Jaqueline Dalla Rosa ◽  
Alvaro Luiz Mafra ◽  
João Carlos Medeiros ◽  
Jackson Adriano Albuquerque ◽  
Davi José Miquelluti ◽  
...  

The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

Bragantia ◽  
2017 ◽  
Vol 76 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Rodrigo Gonçalves Trevisan ◽  
Onã da Silva Freddi ◽  
Flávio Jesus Wruck ◽  
Renan Rimoldi Tavanti ◽  
Fernanda Salles Cunha Peres

ABSTRACT The production systems of upland rice culture in Mato Grosso are not consolidated yet while the effects of soil physical properties and their correlation with rice yield in crop-livestock integrated systems are not defined as well. Therefore, this study determined the spatial variability of physical properties of soil and rice cultivated in no-tillage system under different cover crops, using principal components analysis and geostatistics. The experiment was conducted in Santa Carmen, northern Mato Grosso. A regular grid with 100 sample points distributed in an area of 26,400 m2 was installed. Soil and rice samples were collected to determine rice variables and soil physical properties. The average rice yield was 1.70 Mg∙ha−1, ranging from 0.70 to 3.12 Mg∙ha−1. The highest yields were observed in consortium with cowpea and brachiaria and were associated with lower incidence of grain spots, despite higher soil density and penetration resistance. The consortium with brachiaria, crotalaria, and sudangrass had lower yields, which was associated with higher incidence of grain spots, despite higher soil macroporosity and total porosity.


2015 ◽  
Vol 39 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Renato Eleotério de Aquino ◽  
Milton César Costa Campos ◽  
José Marques Junior ◽  
Ivanildo Amorim de Oliveira ◽  
Daniel De Bortoli Teixeira ◽  
...  

There is a great lack of information from soil surveys in the southern part of the State of Amazonas, Brazil. The use of tools such as geostatistics may improve environmental planning, use and management. In this study, we aimed to use scaled semivariograms in sample design of soil physical properties of some environments in Amazonas. We selected five areas located in the south of the state of Amazonas, Brazil, with varied soil uses, such as forest, archaeological dark earth (ADE), pasture, sugarcane cropping, and agroforestry. Regular mesh grids were set up in these areas with 64 sample points spaced at 10 m from each other. At these points, we determined the particle size composition, soil resistance to penetration, moisture, soil bulk density and particle density, macroporosity, microporosity, total porosity, and aggregate stability in water at a depth of 0.00-0.20 m. Descriptive and geostatistical analyses were performed. The sample density requirements were lower in the pasture area but higher in the forest. We concluded that managed-environments had differences in their soil physical properties compared to the natural forest; notably, the soil in the ADE environment is physically improved in relation to the others. The physical properties evaluated showed a structure of spatial dependence with a slight variability of the forest compared to the others. The use of the range parameter of the semivariogram analysis proved to be effective in determining an ideal sample density.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 652 ◽  
Author(s):  
Yuhua Bai ◽  
Fu Chen ◽  
Hongwen Li ◽  
Hao Chen ◽  
Jin He ◽  
...  

Controlled traffic zero and minimum tillage management with residue cover has been proposed as a solution to erosion and other soil degradation challenges to the sustainability of dryland farming on the Loess Plateau of China. This was assessed between 1998 and 2007 in a field experiment involving a conventional tillage treatment, and 2 controlled traffic treatments, no tillage and shallow tillage, with full straw cover in both cases. This paper reports the soil physical properties after 9 years of dryland wheat production under these treatments, and the substantial improvements seen in soils under controlled traffic. Compared with conventional tillage, controlled traffic significantly reduced soil bulk density in the 0–0.15 m soil layer, and increased total porosity in the 0–0.60 m soil layer, where macroporosity (>60 µm) and mesoporosity (0.2–60 µm) increased at the expense of microporosity (<0.2 µm). Readily available water content and saturated hydraulic conductivity were greater in controlled traffic treatments. Controlled traffic farming appears to be an improvement on current farming systems on the Loess Plateau, and valuable for the sustainable development agriculture in this region.


2010 ◽  
Vol 34 (6) ◽  
pp. 1803-1809 ◽  
Author(s):  
Walquíria Machado ◽  
Tiago Santos Telles ◽  
João Tavares Filho ◽  
Maria de Fátima Guimarães ◽  
Grace Bungenstab Alves ◽  
...  

This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH) and mechanized harvesting of unburnt green cane (MCH), on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned) management system were closest to those of the soil under native forest.


2017 ◽  
Vol 10 (1) ◽  
pp. 361
Author(s):  
Márcio Godofrêdo Rocha Lobato ◽  
Fabrício Menezes Telo Sampaio ◽  
Júlio César Azevedo Nóbrega ◽  
Mozart Martins Ferreira ◽  
Sammy Sidney Rocha Matias ◽  
...  

The tillage systems induce changes in soil structure; modify the porous space, and influence soil water and air dynamics. In this sense, it is important to evaluate these impacts on soil physical quality according to different tillage system with distinct years of implementation. The physical properties of a Oxisol at the Brazilian Cerrado with distinct tillage conditions (conventional, no-till, and a native Cerrado) with different years were compared. The study was conducted at Novo Horizonte farm, at the Cerrado region of southwest Piauí. Soil samples were collected at 0.0-0.10, 0.10-0.20 and 0.20-0.30 m depth in different management systems: no-till with three and five years of implantation (NT3 and NT5, respectively); conventional till with five and nine years (CC5 and CC9, respectively); and a native cerrado area. Were analyzed the aggregate stability in water, soil bulk density, particle density, macro and microporosity, total porosity and total organic carbon. The years of implementation of the tillage systems caused changes in the soil physical properties, which were more evident in the surface layer. Although improved soil physical attributes were observed in no-till after five years of implantation, a longer evaluation time is required for the studied conditions.


2021 ◽  
Vol 161 ◽  
pp. 113174
Author(s):  
Deonir Secco ◽  
Doglas Bassegio ◽  
Bruna de Villa ◽  
Araceli Ciotti de Marins ◽  
Luiz Antônio Zanão Junior ◽  
...  

2018 ◽  
Vol 09 (04) ◽  
pp. 584-598 ◽  
Author(s):  
César Tiago Forte ◽  
Amauri Nelson Beutler ◽  
Leandro Galon ◽  
Camile Thais Castoldi ◽  
Fábio Luís Winter ◽  
...  

2015 ◽  
Vol 7 (1) ◽  
pp. 1007-1024
Author(s):  
B. Turgut

Abstract. The aim of this study was to compare the soils of the wheat cultivation area (WCA) and the safflower cultivation area (SCA) within semi-arid climate zones in terms of their total carbon, nitrogen, sulphur contents, particle size distribution, aggregate stability, organic matter content, and pH values. This study presents the results from the analyses of 140 soil samples taken at two soil layers (0–10 and 10–20 cm) in the cultivation areas. At the end of the study, it has been established that there were significant differences between the cultivation areas in terms of soil physical properties such as total carbon (TC), total nitrogen (TN), total sulphur (TS) contents and pH, while only the TN content resulted in significantly different between the two soil layers. Moreover significant differences were identified in the cultivation areas in terms of soil physical properties including clay and sand contents, aggregate stability and organic matter content, whereas the only significant difference found among the soil layers was that of their silt content. Since safflower contains higher amounts of biomass than wheat, we found higher amounts of organic matter content and, therefore, higher amounts of TN and TS content in the soils of the SCA. In addition, due to the fact that wheat contains more cellulose – which takes longer to decompose – the TC content of the soil in the WCA were found to be higher than that of the SCA. The results also revealed that the WCA had a higher carbon storage capacity.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1697
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Compaction due to traffic is a major threat to soil functions and ecosystem services as it decreases both soil pore volume and continuity. The effects of roots on soil structure have previously been investigated as a solution to alleviate compaction. Roots have been identified as a major actor in soil reinforcement and aggregation through the enhancement of soil microbial activity. However, we still know little about the root’s potential to protect soil from compaction during traffic. The objective of this study was to investigate the relationships between root traits and soil physical properties directly after traffic. Twelve crop species with contrasting root traits were grown as monocultures and trafficked with a tractor pulling a trailer. Root traits, soil bulk density, water content and specific air permeability were measured after traffic. The results showed a positive correlation between the specific air permeability and root length density and a negative correlation was found between bulk density and the root carbon/nitrogen ratio. This study provides first insight into how root traits could help reduce the consequences of soil compaction on soil functions. Further studies are needed to identify the most efficient plant species for mitigation of soil compaction during traffic in the field.


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.


Sign in / Sign up

Export Citation Format

Share Document