scholarly journals Iron oxides and quality of organic matter in sugarcane harvesting systems

2014 ◽  
Vol 38 (4) ◽  
pp. 1143-1152 ◽  
Author(s):  
Diogo Mazza Barbieri ◽  
José Marques Júnior ◽  
Diego Silva Siqueira ◽  
Daniel De Bortoli Teixeira ◽  
Alan Rodrigo Panosso ◽  
...  

Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.

2021 ◽  
Vol 9 (6) ◽  
pp. 881-893
Author(s):  
Mbark Lahmar ◽  
Najib El Khodrani ◽  
Serine Omrania ◽  
Houria Dakak ◽  
Ahmed Douaik ◽  
...  

The study of soil quality in irrigated areas is necessary to evaluate the sustainability of the agricultural production system. Indeed, the assessment of this quality is based on the physicochemical and biological characterization of soil parameters, as well as the knowledge of their spatial distribution and their evolution over time. This work aims to make a diagnosis of the current situation of soil quality of SidiYahya in the Gharb plain, Morocco. For this, sampling was carried out from 33 sites distributed over the studied plain during 2019. In this study, different soil properties including specifically texture, pH, electrical conductivity (EC), organic matter (OM), phosphorus (P2O5), and potassium (K2O) were measured while exchangeable sodium percentage (ESP) was calculated using the standard formula. Based on the observed soil properties a map was prepared by using a geographic information system (GIS), which was based specifically on the inverse distance weighted (IDW) spatial interpolation method. Data were processed using different statistical tools like descriptive statistics, correlation, and principal component analysis (PCA). Results of the study revealed that 70% of the soils have a heavy clayey texture with a predominance of vertisols (55%). Further, the study area soil is mainly alkaline (70%), poor in organic matter (61%) and phosphorus (52%), while very rich in potassium (70%), and non-saline (88%) contents. Soil pH was reported to be the least variable whereas sand, phosphorus, and salinity were the highest variable. IDW allowed mapping the soil properties by moving from punctual information to whole extent information. Furthermore, correlations were found between various soil properties by using PCA, 3 principal components (PCs) were able to extract 76% of the information from the 9 initial soil properties. Collected soil samples were grouped into 3 groups, based on their scores on the 3 PCs. Based on these two kinds of information, delineation of management zones can be established for a site-specific supply of agricultural inputs leading to better management of soil and water resources for securing their sustainable use.


2011 ◽  
Vol 356-360 ◽  
pp. 2758-2762
Author(s):  
Shu Li Wang ◽  
Ning Ning Fan

The effects of four management measures (A: All broad-leaved trees and shrubs were cut, B: All broad-leaved trees were cut, C: All shrubs were cut, D: Partial upper broad-leaved trees were cut uniform.) of Pinus koraiensis plantations on the soil properties were studied in National Natural Reserve located in Lesser Xingan Mountains. Litter mass, soil organic matter mass, soil physical properties, soil chemical properties and microbial characteristics were affected significantly by management activities in the Pinus koraiensis plantations no matter what kind of management measures. The rate of undecomposed layer was bigger than 50% in measure A and measure B, and smaller than 50% in measure C and measure D. The lowest surface soil bulk density was in measure C and D. Soil organic matter mass of measure C and D was bigger than that of measure A and B. In the upper soil layer, the nutrient of measure C and D was higher than that of measure A and B. The totoal number of bacterium, fungi and actinomycetes was the bigger in measure C and D, and the smaller in measure A and B. The rusults of the soil properties under different management measures seems to confirm that increasing the degree of close-to-nature forest management could be conductive to improve the soil quality of Pinus koraiensis plantation.


2020 ◽  
pp. 8-27
Author(s):  
Godswill Azinwie Asongwe ◽  
Bernard P. K. Yerima ◽  
Aaron Suh Tening ◽  
Irene Bongsiysi Bame

Fluvisols in urban wetlands in Bamenda Municipality Cameroon play a vital role in vegetable production but they are under immense pressure. Seven representative soil profiles and 21 surface soil samples were morphologically and/or physico-chemically characterized to classify the soils, evaluate their agro-utilization constraints, and to provide adequate data for planning sustainable land management. The soil samples were analyzed using standard procedures. Critical levels established for tropical crops and vegetables were used to declare deficiency of soil nutrients. The coefficient of variation were used as an index of soil variability, while sources of soil variation and subsequent grouping into management units were identified using principal component analysis. The soils, classified as Humi-umbric fluvisols are developed from young alluvio-colluvial material of granitic origin. Like other physico-chemical properties, organic matter varied irregularly down the profile. Except of pH which was slightly (CV<15%) variable, most soil properties were moderately (CV=15-35%) to highly (CV>35%) variable. Some correlation coefficients between the soil parameters were highly significant (p<0.01) ranging - 0.95 to 0.99, but most of them have correlation values less than 0.5. Six principal components (PCs) grouping soils in management units explained 96.2% of the variations observed in the soil properties. The PCs were: base status, organic matter, weathering and moisture retention, acidity, dispersal and N-mineralization, and mineral neo-synthesis factors. We recommend that a detailed mapping of soil properties be carried out for the establishment of a soil fertility map; and individual soil management practices defined for identified units instead of a common management for all units in the municipality.


2008 ◽  
Vol 25 (No. 5) ◽  
pp. 249-258
Author(s):  
I. Švec ◽  
M. Hrušková ◽  
O. Jirsa

The effects of wheat cultivar and harvest year on the wheat technological quality were studied by univariate and multivariate statistical methods. Two wheat varieties sown in the harvest years 2003–2005 were used, the first one of European (cultivar Bezostaja, RUS), the second one of American origin (cultivar Jagger, USA). The evaluated parameter values indicated otherness of technological quality of the varieties studied, mostly in the milling effectivity and in proteins contents and quality. Principal component analysis (PCA) results suggested these differences, but their verifiability based on ANOVA testing was not proved. The harvest year mostly affected also the milling quality and alveograph parameters. The baking test results were not affected by either of both effects studied. The crop of 2003 had higher proximity to the crop of 2004 than to that of 2005. Multivariate analysis (cluster analysis; CA), was used to evaluate the interaction between the wheat cultivar and harvest year effects. In comparison of these effects rate, the technological quality of American cultivar Jagger was strongly influenced by the cultivar (with exception of Falling Number and gases volume). In contrast, the quality of the European wheat cultivar Bezostaja depended significantly on the harvest year.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Nguyen Thi Thoa ◽  
Nguyen Hai Dang ◽  
Do Hoang Giang ◽  
Nguyen Thi Thu Minh ◽  
Nguyen Tien Dat

A precise HPLC-DAD-based quantification together with the metabolomics statistical method was developed to distinguish and control the quality of Fallopia multiflora, a popular medicinal material in Vietnam. Multivariate statistical methods such as hierarchical clustering analysis and principal component analysis were utilized to compare and discriminate six natural and twelve commercial samples. 2,3,4′,5-Tetrahydroxystilbene 2-O-β-D-glucopyranoside (THSG) (1), emodin (4), and the new compound 6-hydroxymusizin 8-O-α-D-apiofuranosyl-(1⟶6)-β-D-glucopyranoside (5) could be considered as important markers for classification of F. multiflora. Furthermore, seven phenolics were quantified that the variation in the contents of selected metabolites revealed the differences in the quality of natural and commercial samples. Recovery of the compounds from the analytes was more than 98%, while the limits of detection (LOD) and the limits of quantitation (LOQ) ranged from 0.5 to 6.6 μg/ml and 1.5 to 19.8 μg/ml, respectively. The linearity, LOD, LOQ, precision, and accuracy satisfied the criteria FDA guidance on bioanalytical methods. Overall, this method is a promising tool for discrimination and quality assurance of F. multiflora products.


1966 ◽  
Vol 46 (2) ◽  
pp. 155-160 ◽  
Author(s):  
G. R. Saini ◽  
A. A. MacLean ◽  
J. J. Doyle

The relationship of the mean weight diameter of water-stable aggregates to certain soil properties (clay, organic matter, free iron, free aluminum, and polysaccharide contents) and the relationship of the increase in aggregation caused by VAMA to the same properties of 24 New Brunswick soils were evaluated by correlation and regression analyses.Simple correlation coefficients relating aggregation to soil properties indicated that organic matter (r = 0.627), polysaccharides (r = 0.602), and aluminum (r = 0.679) were the most important factors. However, when the influence of each factor was separated by partial correlation, the coefficients were not significant. On the other hand, the combined effects of all factors as indicated by the multiple correlation coefficient (r = 0.743) was significant at the 1% level. The effect of the same soil properties on response to VAMA, as shown by increase in mean weight diameter, indicated that clay exerted the greatest influence. The relationship with other factors was nonsignificant.


2005 ◽  
Vol 85 (3) ◽  
pp. 417-426 ◽  
Author(s):  
D V Ige ◽  
O O Akinremi ◽  
D N Flaten ◽  
B. Ajiboye ◽  
M A Kashem

The establishment of the P retention capacity of soil in Manitoba is essential for effective management of P in the region. However, the methods for determining the P retention capacity for neutral to calcareous soils in the Eastern Prairies are not well developed. The objectives of this study were to determine the P retention capacity of Manitoba soils and to generate equations that relate these capacities to other soil properties. One hundred and fifteen archived surface soils were selected and their physico-chemical properties were measured. These soils were used to generate a single-point P adsorption index by equilibrating 2 g of soil in 20 mL of 0.01 M KCl solution containing either 150 (P150) or 400 (P400) mg P L-1. A subset of 26 of these soils was used for multipoint isotherms with P concentrations in the range of 0–1000 mg P L-1. The data obtained were fitted to the Langmuir isotherm and the adsorption indices were correlated with the various soil properties that were then used to developed predictive equations of the P retention capacity of the soil. The values of the adsorption index, P150, obtained from the single point adsorption study using 150 mg P L-1, ranged between 88 and 891 mg P kg-1, while that of P400 ranged between 100 and 1250 mg P kg-1. A better correlation was obtained between P150 and soil properties compared with P400. For the 26 soil subset, the adsorption indices, Smax1 to Smax 6, obtained from the Langmuir isotherm, ranged from 300 to 1330 mg kg-1. A good correlation was obtained between the single point index and the multipoint isotherm (r = 0.93). Hence, Smax for the 115 soils was estimated from the relationship between P150 and Smax 3 of the 26 soils. The best relationships between the adsorption parameters, P150 and Smax, and the soil properties were obtained with the sum of Mehlich-3 extractable Ca and Mg (R2= 0.66) and the sum of exchangeable Ca and Mg (R2= 0.64). Mehlich-3-Ca and -Mg each explained 56% of the variation, while clay content explained 40% of the variation in the P retention capacity of these soils. Unlike the widely reported influence of Al and Fe in acid soils, our study showed that the retention of P in Manitoba soils was influenced more by Ca and Mg and soil texture. Key words: Phosphorus, phosphorus retention capacity, phosphorus adsorption capacity, phosphorus sorption, single-point index


2009 ◽  
Vol 33 (3) ◽  
pp. 571-579 ◽  
Author(s):  
Geraldo Erli Faria ◽  
Nairam Félix de Barros ◽  
Roberto Ferreira Novais ◽  
Ivo Ribeiro Silva

Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.


1969 ◽  
Vol 52 (4) ◽  
pp. 269-280 ◽  
Author(s):  
L. C. Liu ◽  
H. Cibes Viadé

Thirteen soils representing a wide range of physical and chemical properties were used in this study. Four herbicides including Atrazine, Ametryne, Prometryne, and Diuron were applied at a concentration series from 0.5 to 32 p.p.m. to each soil, with the exception of Caño Tiburones soil. Kanota oat (Avena sativa L.) was chosen as an indicator plant. ED50  values were obtained for the various soil types. The result indicated that ED50  values varied greatly with different soil types. Simple, partial, and multiple correlations were made among ED50  values and different soil properties. It was found that the organic matter was the major soil property which contributed chiefly to the phytotoxicity of herbicides. A theoretical relationship between percent soil organic matter and p.p.m.w. of herbicides required for 50-percent fresh-weight reduction of oat was obtained for herbicide dosage-prediction purpose.


Sign in / Sign up

Export Citation Format

Share Document