scholarly journals Milk yield and reproductive performance of dairy heifers and cows supplemented with polyunsaturated fatty acids

2015 ◽  
Vol 50 (4) ◽  
pp. 306-312 ◽  
Author(s):  
Félix Gonzalez ◽  
Rodrigo Muiño ◽  
Víctor Pereira ◽  
Diego Martinez ◽  
Cristina Castillo ◽  
...  

The objective of this work was to determine productive and fertility responses of Holstein-Friesian heifers and cows to supplementation with extruded linseed and soybean as sources of polyunsaturated fatty acids (PUFAs). Supplementation had a positive effect on profitability, with significant increases in milk yield in supplemented cows, but not in heifers. Treatments had no effect on milk fat content, but higher milk protein contents were observed with supplementation. A higher conception rate was found for supplemented heifers, but not for cows. Fat sources containing PUFAs are recommended for dairy cattle supplementation, since they improve fertility in heifers and milk yield in cows.

2017 ◽  
Vol 7 (3) ◽  
pp. 169-179 ◽  
Author(s):  
R. V. Milostiviy ◽  
M. P. Vysokos ◽  
O. O. Kalinichenko ◽  
T. O. Vasilenko ◽  
D. F. Milostiva

<p>The lifetime productivity of European Holstein cows and their offspring under conditions of industrial milk production technology was studied. It is established that the productive longevity of European Holstein cow offspring in the conditions of the industrial complex was reduced by 1.0 lactation (td = 5.6 or P≥ 0.999), an average of 2.6 lactations. The lifetime milk yield was lower by 20.9% (td = 2.6 or P≥0.99), and the yield of milk fat and protein by 23.0 (td = 3.3 or P≥ 0.999) and 24.1% (Td = 4.8 or P≥ 0.999). At the same time, the influence of origin on lifelong milk yield was 9.5% (P≥0.95), on fat content - 22.7% (P≥0.999) and on milk protein - 37.5% (P≥0.999). The variation coefficient (Cv = 12.1 ... 79.2%) of animal signs has a sufficient level for carrying out effective breeding work. Revealed high phenotypic and genotypic correlation coefficients between the indices of lifetime productivity (r = + 0.92 ... + 0.98) showed that the breeding of any signs will have a positive effect on others ones. The coefficients of productive qualities heredity (h2 = 0.18 ... 0.23), prove that breeding based on the lifetime productivity signs will have a positive effect on the progress in dairy cattle breeding.</p><p>Evaluation of dairy cattle productive longevity has great scientific and practical importance. Studies were carried out on Holstein cows using the data of the dairy cattle management system "Orsek". Biometric processing was carried out with the help of Stat Soft software "Statistica 7.0". The advantage of the study lies in the fact that the Holstein of different origins were kept in the same environmental conditions. Intra-breed differences in lifelong productivity of imported cows were revealed. The lifetime milk yield of Danish animals exceeded the average by1336 kg, fat by 73.4 and protein by60.7 kg. However, the offspring of imported Hungarian cows were the most suitable for industrial technology. They surpassed the Danish and German opponents by 0.4 and 0.5 lactation in productive longevity, by 9213 and9688 kgin lifetime milk yield, by 106 and239 kgin fat and by 72 and202 kgin milk protein. In general, in conditions of industrial milk production technology, the duration of first-generation cow productive life was reduced by 1.0 lactation (td = 5.6 or P≥ 0.999), in average it was 2.6 lactations. At the same time, the lifetime milk yield of imported animal offspring was significantly lower by7167 kg, that is, by 20.9% - decreased from 34245 to27078 kg(td = 2.6 or P≥0.99). As a consequence, the first generation cows’ milk fat and protein were lower by 23.0 (td = 3.3 or P≥ 0.999) and 24.1% (td = 4.8 or P≥0.999). It was found that the variability of the signs (Cv) ranged from 14.7 ... 15.4 (protein content) to 42.0 ... 52.6% (milk yield), increasing in the first generation from 11.4 ... 16, 8 to 53.6 ... 56.1%, which indicates the possibility of carrying out effective breeding. Female offspring of imported cows have a low heritability in lifetime milk yield (h2 = 0.02 ... 0.18), in milk fat yield (h2 = 0.03 ... 0.23) and in protein (h2 = 0.05 ... 0.19). At the same time, the density of the positive correlation between lifetime milk yield and the yield of fat and protein was quite high (r = + 0.92 ... + 0.98). Only Danish cow offspring had positive correlation "milk yield – fat content" (r = + 0.30). The single-factor ANOVA identified that the influence of origin on lifetime milk yield of first generation cows was 9.5% (P≥0.95), on fat content - 22.7% (P≥0.999) and on milk protein – 37.5% (P≥0.999). It shows the weakening of environmental influence in the conditions of annual unhandled keeping and the same feeding. The study results testify the possibility of an effective use of bulls and cows for dairy cattle breeding in Ukraine. However, the reduction of animal productive longevity in the conditions of industrial technology should serve as a stimulus for further in-depth study of the problem.</p>


1996 ◽  
Vol 62 (1) ◽  
pp. 1-3 ◽  
Author(s):  
P. C. Garnsworthy

AbstractTwenty-eight Holstein/Friesian dairy cows were divided into four groups of seven. From weeks 4 to 15 of lactation they were given a basal diet consisting of 8 kg hay, 2 kg sugar-beet feed and 2 kg grass nuts, together with a concentrate allowance of 8 kg/day. Concentrates for group A were based on cereals and soya (control). Concentrate B contained 60 g protected fat supplement per kg; concentrate C contained 100 g lactose per kg; concentrate D contained 60 g fat supplement and 100 g lactose per kg. Milk yields were 24·6, 27·7, 25·6 and 26·5 kg/day and milk protein concentrations were 32·3, 30·7, 32·7 and 31·9 g/kg for groups A, B, C and D respectively. The effect of fat supplementation on milk yield and protein concentration was significant (P < 0·05) but the effect of lactose was not significant. Milk fat concentration was not significantly affected by treatment. It is concluded that lactose can partially alleviate the depression in milk protein concentration often observed when cows are given protected fat.


1995 ◽  
Vol 60 (2) ◽  
pp. 169-175 ◽  
Author(s):  
E. A. Mukisira ◽  
L. E. Phillip ◽  
B. N. Mitaru

AbstractThe study determined the effects of partial removal of alkaloids (detoxification) in crushed lupin seed (CLS) on voluntary food intake, and yield and composition of milk from dairy cattle. Twenty multiparous Friesian dairy cows (first 90 days of lactation) were assigned, according to a randomized complete-block design, to five diets. The diets were formulated to be isonitrogenous (25·6 g N per kg of diet dry matter (DM)) and contained napier grass, lucerne hay, maize bran and urea. The control diet (CON) contained sunflower meal; two diets contained intact CLS at 150 (LUI-15) or 300 g (LUl-30) per kg diet DM. The other two diets contained detoxified CLS at 150 (LUD-15) or 300 g (LUD-30) per kg diet DM. Lupin seeds were detoxified by treatment with boiling water, followed by steeping in cold water. The diets were analysed by gas chromatography for the alkaloids, lupanine and 13-hydroxylupanine. The total alkaloid content of LUI-15 and LUl-30 was 3·8 and 8·0 g/kg diet DM, respectively; by contrast that of LUD-15 and LUD-30 was 2·1 and 5·2 g/kg diet DM respectively. Increasing the level of intact CLS in the diet led to a decrease in voluntary food intake. Cows given LUl-30 had a lower milk yield (11·1 kg/day) than those given LUI-15 (13·8 kg/day;P< 0·01) but there was no difference in either milk protein yield or content. Detoxification of lupin removed proportionately about 0·40 of the total alkaloids from intact CLS and increased food intake, and the yield of milk and milk protein (P< 0·05) but reduced milk fat content. Detoxification of CLS also reduced the rumen degradability of lupin protein (P< 0·05). It is concluded that the reduction in organic matter intake and milk yield of cows given diets containing intact CLS was due to the presence of lupanine and 13-hydroxylupanine. To maximize its usage in diets for dairy cattle, lupin should be detoxified; it can then be included at levels up to 300 g/kg diet DM.


2010 ◽  
Vol 78 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Erik W Berkowicz ◽  
David A Magee ◽  
Klaudia M Sikora ◽  
Donagh P Berry ◽  
Dawn J Howard ◽  
...  

The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle. In this study we assessed genotype-phenotype associations between four single nucleotide polymorphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of performance traits related to milk production, animal growth and body size, fertility and progeny survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909 and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2=0·995), were associated with milk yield (P⩽0·01) and milk protein yield (P⩽0·05); the rs42196901 SNP was also associated (P⩽0·05) with milk fat yield. Associations (P⩽0·05) with milk fat percentage and milk protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively. The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass conformation (P⩽0·05), while an association (P⩽0·01) with progeny carcass weight was observed at the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and progeny survival. These findings support previous work which suggests that the IGF2 locus is an important biological regulator of milk production in dairy cattle and add to an accumulating body of research showing that imprinted genes influence many complex performance traits in cattle.


1995 ◽  
Vol 1995 ◽  
pp. 150-150
Author(s):  
C. Sandoval ◽  
J.D. Leaver

The combination of milking combined with restricted suckling is a common production system (dual purpose) in many countries. In a previous study (Boden and Leaver, 1994, Animal production 58, 463-464 Abstr.), Holstein Friesian cows milked once daily, and restricted suckled produced 0.56 of the saleable milk of conventional twice daily milked cows. Restricted suckling substantially reduced milk fat and increased milk protein contents. In this study, a range of milking and suckling patterns were examined.


2009 ◽  
Vol 52 (4) ◽  
pp. 356-363 ◽  
Author(s):  
J. Barłowska ◽  
T. Grodzicki ◽  
B. Topyła ◽  
Z. Litwińczuk

Abstract. The investigations included total 515 milk samples which were collected from 309 cows of the main dairy cows’ breeds used in Poland, i.e. Polish Holstein-Friesian Black-White variety (n=150), Polish Holstein-Friesian Red-White variety (n=77) and Simmental (n=82). There was determined a content of fat, protein and dry matter, a share of fat globules ranging in size, i.e. <6 μm, 6-10 μm and >10 μm as well as a fatty acids profile. It was shown that milk gained from Holstein-Friesian cows was characterized with a higher level of fat dispersion (over 70 % globules of <6 μm diameter and a higher percentage of short- and long-chain fatty acids (ca. 19 %). The Simmentalers’ milk had a higher protein : fat ratio (about 0.89), a lower fat dispersion level (8.21 % globules of >10 μm diameter) and the highest share of the polyunsaturated fatty acids (3.28 %). Cows nutrition included pasture forage during summer (independently on the breed) had a significant influence (P≤0.01) on increased polyunsaturated fatty acids percentage (mean by 0.51 %). The winter milk, however, showed a significantly higher content of dry matter, fat and protein as well as a higher share of big-sized milk globules.


1999 ◽  
Vol 66 (4) ◽  
pp. 475-487 ◽  
Author(s):  
ZYGMUNT M. KOWALSKI ◽  
PAWEŁ M. PISULEWSKI ◽  
MAURO SPANGHERO

The objective of this study was to determine the effects of supplementing the diets of dairy cows with Ca soaps of rapeseed fatty acids (CSRFA) and rumen-protected (RP) methionine on their milk yield and composition, including milk protein fractions and fatty acids. Twelve Polish Red Lowland cows were used in a complete balanced two period changeover experiment. The four treatment diets were a control consisting of a total mixed ration of grass silage and concentrates, and the total mixed ration supplemented with RP methionine, CSRFA or RP methionine plus CSRFA. Dry matter intake was not affected by diet. Milk yield increased when cows were given the diet with CSRFA, but supplementation of diets with RP methionine did not affect milk yield. Milk protein content, but not milk protein yield, decreased when CSRFA was given. The addition of RP methionine to the control diet and the CSRFA diet produced similar increases in the milk protein content. Supplementation of the diet with CSRFA significantly changed the milk fatty acid profile: the proportions of 10:0, 12:0, 14:0, 15:0 and 16:0 in milk fat decreased, but those of 18:0 and cis-18:1 increased. We conclude that CSRFA can be used in practical dairy diets to increase milk yield and manipulate its fatty acid composition.


1995 ◽  
Vol 1995 ◽  
pp. 150-150
Author(s):  
C. Sandoval ◽  
J.D. Leaver

The combination of milking combined with restricted suckling is a common production system (dual purpose) in many countries. In a previous study (Boden and Leaver, 1994, Animal production 58, 463-464 Abstr.), Holstein Friesian cows milked once daily, and restricted suckled produced 0.56 of the saleable milk of conventional twice daily milked cows. Restricted suckling substantially reduced milk fat and increased milk protein contents. In this study, a range of milking and suckling patterns were examined.


2002 ◽  
Vol 74 (3) ◽  
pp. 553-565 ◽  
Author(s):  
A. F. Carson ◽  
L. E. R. Dawson ◽  
M. A. McCoy ◽  
D. J. Kilpatrick ◽  
F. J. Gordon

AbstractOne hundred and thirteen high genetic merit Holstein-Friesian heifers were used in a study to determine the effect of rearing regime, in terms of diet offered and target calving weight, on body size, reproductive performance and milk production in high genetic merit heifers. Eighty of the heifers were supplied from 11 commercial farms, the remainder were supplied from the herd at the Agricultural Research Institute of Northern Ireland. The heifers commenced the experiment at 7 weeks of age when they were allocated on the basis of source, live weight and genetic merit to one of four rearing regimes. The target weights at calving were 540 kg (treatment 1) and 620 kg (treatments 2, 3 and 4). Treatment 1 heifers were offered grass silage-based diets during the winter and grass-based diets during the summer. Treatment 2 heifers were offered the same forage base plus additional concentrate supplementation. Treatment 3 heifers were offered a straw/concentrate diet during the winter and grass-based diets during the summer. Treatment 4 heifers received the same diets as treatment 3, except for the first summer period when they remained housed and were offered a straw/concentrate diet. The heifers were mated at 14 months of age and were returned to the 11 source farms one month prior to calving. Heifers reared on treatment 1 had a lower withers height (P < 0·001) and were of a lower condition score (P < 0·001) before calving than heifers reared on treatments 2, 3 and 4. During early lactation (3 months post calving) heifers reared on treatment 1 lost less weight and condition score than the heifers reared on the other treatments. Thus at the end of the first lactation live weights did not differ significantly between the treatments. However, body length remained shorter (P < 0·01) in treatment 1 compared with treatments 2, 3 and 4. First lactation milk yield (305 days) was lower for heifers reared on treatment 1 (7222 l) compared with heifers reared on treatment 2 (8020 l) (P < 0·01), 3 (7956 l) (P < 0·01) and 4 (7901 l) (P < 0·05). Similarly, milk fat plus protein yield was lower (P < 0·05) for heifers reared on treatment 1 (511 kg) compared with treatments 2 (544 kg), 3 (544 kg) and 4 (554 kg). The interval from calving to first recorded oestrus was shorter in treatment 1 compared with treatments 2 and 3 (P < 0·05). There was a tendency (P < 0·10) for heifers reared on treatment 1 to have a shorter calving interval (394 days) compared with treatments 2 (426 days), 3 (435 days) and 4 (458 days). In conclusion increasing the live weight of Holstein-Friesian heifers at first calving from 540 to 620 kg pre-calving increased milk yield proportionally by 0·11 but tended to increase the calving interval. Diet type during the rearing period had no effect on milk fat plus protein yield or reproductive performance.


Sign in / Sign up

Export Citation Format

Share Document