scholarly journals Soil aggregation according to the dynamics of carbon and nitrogen in soil under different cropping systems

2016 ◽  
Vol 51 (9) ◽  
pp. 1652-1659 ◽  
Author(s):  
Getulio de Freitas Seben Junior ◽  
José Eduardo Corá ◽  
Rattan Lal

Abstract The objective of this work was to evaluate total soil carbon and nitrogen, as well as their contents in particulate and mineral-associated C fractions; to determine C stock and sequestration rates in the soil; and to verify the effect of C and N contents on soil aggregation, using different crop rotations and crop sequences under no-tillage. The study was carried out for nine years in a clayey Oxisol. The treatments consisted of different cropping systems formed by the combination of three summer crops (cropped until March) - corn (Zea mays) monocropping, soybean (Glycine max) monocropping, and soybean/corn rotation - and seven second crops (crop successions). Soil samples were taken at the 0.00-0.10-m layer for physical fractionation of C and N, and to determine soil aggregation by the wet method. Soybean monocropping increased C and N in particulate C fraction, while the crop systems with corn monocropping x pigeon pea (Cajanus cajan), corn monocropping x sun hemp (Crotalaria juncea), and soybean monocropping x corn as a crop succession increased total C in the soil. Greater rates of soil C sequestration were observed with soybean/corn rotation and with soybean monocropping, as well as with sun hemp as a second crop. The increase in total N increases soil C stock. Soil aggregation was most affected at particulate C fraction. Increases in soil N promote C addition to particulate fraction and enhance soil aggregation.

1992 ◽  
Vol 72 (3) ◽  
pp. 201-216 ◽  
Author(s):  
P. M. Rutherford ◽  
N. G. Juma

Modelling in soil ecological research is a means of linking the dynamics of microbial and faunal populations to soil processes. The objectives of this study were (i) to simulate bacterial-protozoan interactions and flows of C and N in clay loam Orthic Black Chernozemic soil under laboratory condtions; and (ii) to quantify the flux of C and N (inputs and outputs) through various pools using the simulation model. The unique features of this model are: (i) it combines the food chain with specific soil C and N pools, and (ii) it simultaneously traces the flows of C, 14C, N and 15N. It was possible to produce a model that fitted the data observed for the soil. The simulated CO2-C evolved during the first 12 d was due mainly to glucose addition (171 μg C g−1 soil) and cycling of C in the soil (160 μg C g−1 soil). During this interval, bacterial C uptake was 5.5-fold greater than the initial bacterial C pool size. In the first 12 d protozoa directly increased total CO2-C evolution by 11% and increased NH4-N mineralization 3-fold, compared to soil containing only bacteria. Mineralization of C and N was rapid when bacterial numbers were increased as a result of glucose addition. Key words: Acanthamoeba sp., modelling, N mineralization-immobilization, organic matter, Pseudomonas sp., Typic Cryoboroll


2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


2021 ◽  
Author(s):  
Xiaolin Dou ◽  
Meng Lu ◽  
Liding Chen

Abstract Purpose Studies about soil carbon (C) and nitrogen (N) dynamics with land use change are urgently needed for urban ecosystems. We used fractionation of soils combined with stable isotopic analysis to examine soil C and N cycles after decadal forest and lawn planting in the Pearl River Delta, China. Methods Soil samples from bare soil (CK) and four land use treatments (55 and 20 years of forest plantation, F-55 and F-20; 55 and 20 years of lawn plantation, L-55 and L-20) were split into different chemical fractions. Then we analyzed the C and N contents, C/N ratio, δ13C and δ15N, C and N recalcitrant indices (RIC, RIN), and a C pool management index (CPMI).Results Forest vegetation substantially enhanced soil organic carbon (SOC) caused by the recalcitrant (RC) and labile C (LC) pools, while the larger soil organic nitrogen (SON) was ascribed to the increased recalcitrant N (RN). Enhanced LC but minor changes in labile N (LN) suggested a decoupled C and N in labile fractions of the forest soils. In contrast, the larger LN, and the enhanced decomposition of SOC, indicated that the lawns may have inhibited N mineralization of labile pools, also suggesting a decoupled C and N turnover and leading to low RIN values. Conclusions Urban forest and lawn plantations significantly changed the soil C and N dynamics, and emphasized the inconsistency between C and N processes, especially in labile pools, which would eventually lead to minor changes in N and limit the ecosystem C sequestration.


2020 ◽  
Vol 12 (22) ◽  
pp. 9363
Author(s):  
Maristela C. Morais ◽  
Marcos Siqueira-Neto ◽  
Henrique P. Guerra ◽  
Lucas S. Satiro ◽  
Amin Soltangheisi ◽  
...  

Environmental benefits from bioenergy production derived from sugarcane crop residues (straw) can be lost by soil organic matter depletion resulting from excessive straw removal rates from fields. Soil organic carbon stock is the core for sustaining soil health, supporting nutrient cycling, and sequestering carbon dioxide. To find out that how much sugarcane straw can be removed from the field to produce bioenergy without changes in soil C concentrations, we investigated effects of straw removal rates (total, moderate, and no removal of sugarcane straw) on soil carbon and nitrogen fractions in an Oxisol and an Ultisol in southeastern Brazil for two years. Soil C and N fractions were affected by increased rates of straw removal at the second year. In the Oxisol, total straw removal decreased labile and microbial-C by ~30% and soil C stock by 20% compared to no straw removal. No removal decreased microbial-N and total N stock by ~15% and ~20%, respectively. In the Ultisol, no straw removal resulted in increases in C stock by >10% and labile and microbial-C by ~20% related to total straw removal. Total straw removal showed more microbial-N (~10%) and total-N stock (~25%) compared to no straw removal. The moderate straw removal intensity (i.e., 8 to 10 Mg ha−1 of straw) may control the straw-C release to soil by straw decomposition. This study suggests that excessive straw removal rates should be avoided, preventing SOM depletion and consequently, soil health degradation. Moderate straw removal seems to be a promising strategy, but long-term soil C monitoring is fundamental to design more sustainable straw management and bioenergy production systems.


2020 ◽  
Vol 66 (No. 5) ◽  
pp. 222-233 ◽  
Author(s):  
Giuseppe Badagliacca ◽  
Robert Martin Rees ◽  
Dario Giambalvo ◽  
Sergio Saia

In sustainable agriculture crop residues management should consider the interactions between soil and residue properties, which can affect the decomposition and global greenhouse gases (GHGs) emission. Through a laboratory experiment, we investigated the effect of the management (incorporation and surface placement) of wheat and faba bean residues on their decomposition and CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O emissions from two soils, a Chromic Vertisol and an Eutric Cambisol. In the Vertisol, wheat residues increased the CO<sub>2</sub> emission more than faba bean when left on the surface whereas no differences among residues were observed when incorporated. In the Cambisol, faba bean emitted more than wheat when left in the surface and less when incorporated. Total CH<sub>4</sub> emissions were higher in faba bean in Cambisol for both management and only when applied in the surface in Vertisol. Total N<sub>2</sub>O emission in the Vertisol was higher when faba bean was incorporated, and wheat was left on the surface. In the Cambisol, wheat addition increased total N<sub>2</sub>O emissions by 20% compared to faba bean, with no differences between managements. Our study confirmed that contrasting properties among tested soils resulted in significant interactions with residues own degradability and their placement affecting residue decomposition, soil C and N dynamics, and GHGs emission.


2002 ◽  
Vol 82 (2) ◽  
pp. 211-217 ◽  
Author(s):  
S S Malhi ◽  
J T Harapiak ◽  
M. Nyborg ◽  
K S Gill ◽  
N A Flore

An adequate level of organic matter is needed to sustain the productivity, improve the quality of soils and increase soil C. Grassland improvement is considered to be one of the best ways to achieve these goals. A field experiment, in which bromegrass (Bromus inermis Leyss) was grown for hay, was conducted from 1974 to 1996 on a thin Black Chernozemic soil near Crossfield, Alberta. Total organic C (TOC) and total N (TN), and light fraction organic C (LFOC) and light fraction N (LFN) of soil for the treatments receiving 23 annual applications of 112 kg N ha-1 as ammonium nitrate (AN) or urea in early autumn, late autumn, early spring or late spring were compared to zero-N check. Soil samples from 0- to 5- cm (layer 1), 5- to 10- cm (layer 2), 10- to 15- cm (layer 3) and 15- to 30-cm depths were taken in October 1996. Mass of TOC, TN, LFOC and LFN was calculated using equivalent mass technique. The concentration and mass of TOC and LFOC, TN and LFN in the soil were increased by N fertilization compared to the zero-N check. The majority of this increase in C and N occurred in the surface 5-cm depth and predominantly occurred in the light fraction material. In layer 1, the average increase from N fertilization was 3.1 Mg C ha-1 for TOC, 1.82 Mg C ha-1 for LFOC, 0.20 Mg N ha-1 for TN and 0.12 Mg N ha-1 for LFN. The LFOC and LFN were more responsive to N fertilization compared to the TOC and TN. Averaged across application times, more TOC, LFOC, TN and LFN were stored under AN than under urea in layer 1, by 1.50, 1.21, 0.06 and 0.08 Mg ha-1, respectively. Lower volatilization loss and higher plant uptake of surfaced-broadcast N were probable reasons from more soil C and N storage under AN source. Time of N application had no effect on the soil characteristics studied. In conclusion, most of the N-induced increase in soil C and N occurred in the 0- to 5-cm depth (layer 1) and in the light fraction material, with the increases being greater under AN than urea. Key words: Bromegrass, light fraction C and N, N source, soil, total organic C and N


2004 ◽  
Vol 84 (1) ◽  
pp. 49-61 ◽  
Author(s):  
E. A. Paul ◽  
H. P. Collins ◽  
K. Paustian ◽  
E. T. Elliott ◽  
S. Frey ◽  
...  

Factors controlling soil organic matter (SOM) dynamics in soil C sequestration and N fertility were determined from multi-site analysis of long-term, crop rotation experiments in Western Canada. Analyses included bulk density, organic and inorganic C and N, particulate organic C (POM-C) and N (POM -N), and CO2-C evolved during laboratory incubation. The POM-C and POM-N contents varied with soil type. Differences in POM-C contents between treatments at a site (δPOM-C) were related (r2= 0.68) to treatment differences in soil C (δSOC). The CO2-C, evolved during laboratory incubation, was the most sensitive indicator of management effects. The Gray Luvisol (Breton, AB) cultivated plots had a fivefold difference in CO2-C release relative to a twofold difference in soil organic carbon (SOC). Soils from cropped, Black Chernozems (Melfort and Indian Head, SK) and Dark Brown Chernozems (Lethbridge, AB) released 50 to 60% as much CO2-C as grassland soils. Differences in CO2 evolution from the treatment with the lowest SOM on a site and that of other treatments (δCO2-C) in the early stages of the incubation were correlated to δPOM-C and this pool reflects short-term SOC storage. Management for soil fertility, such as N release, may differ from management for C sequestration. Key words: Multi-site analysis, soil management, soil C and N, POM-C and N, CO2 evolution


2020 ◽  
Author(s):  
Virginia Sánchez-Navarro ◽  
Mariano Marcos-Pérez ◽  
Raúl Zornoza

&lt;p&gt;&lt;strong&gt;Legume crops have been proposed as a way of reducing greenhouse gas (GHG) emissions because both, their rhizosphere behaviour and their ability to fix atmospheric N reducing the need of external N fertilizer. Moreover, the establishment of organic agriculture has been proposed as a sustainable strategy to enhance the delivery of ecosystem services, including mitigation of climate change by decreases in GHG emissions and increases in soil C sequestration. The aim of this study was to assess the effect of the association between cowpea (Vigna unguiculata L.) and melon (Cucumis melo L.) growing in different &lt;/strong&gt;intercropping patterns &lt;strong&gt;on soil CO&lt;sub&gt;2&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O emissions compared to cowpea and melon monocultures &lt;/strong&gt;&lt;strong&gt;under organic management as a possible strategy for climate change mitigation. Soil &lt;/strong&gt;&lt;strong&gt;CO&lt;sub&gt;2&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O&lt;/strong&gt;&lt;strong&gt; emissions were weekly measured in melon and cowpea rows using the dynamic chamber method during one cropping cycle in 2019. Results indicated that melon growing as monoculture was related to increases in &lt;/strong&gt; &lt;strong&gt;O cumulative emissions (0.431 g m&lt;sup&gt;-2&lt;/sup&gt;) compared to the average of the rest of treatments (0.036 g m&lt;sup&gt;-2&lt;/sup&gt;). Cowpea growing as monoculture was related to decreases in &lt;/strong&gt;&lt;strong&gt;CO&lt;sub&gt;2&lt;/sub&gt;&lt;/strong&gt; &lt;strong&gt;cumulative emissions (390 g m&lt;sup&gt;-2&lt;/sup&gt;) compared with the other treatments (512 g m&lt;sup&gt;-2 &lt;/sup&gt;average). However, N&lt;sub&gt;2&lt;/sub&gt;O and &lt;/strong&gt;&lt;strong&gt;CO&lt;sub&gt;2&lt;/sub&gt;&lt;/strong&gt;&lt;strong&gt; emission patterns did not directly follow soil moisture patterns in the experimental period, with no significant correlations. Finally there were no significant differences among intercropping treatments with regard to NO&lt;sub&gt;2&lt;/sub&gt; and &lt;/strong&gt;&lt;strong&gt;CO&lt;sub&gt;2 &lt;/sub&gt;&lt;/strong&gt;&lt;strong&gt;emissions. Further measurements are needed to monitor the evolution of GHG emissions under these cropping systems and confirm the trend observed&lt;/strong&gt;.&lt;/p&gt;


2020 ◽  
Author(s):  
David Lefebvre ◽  
Jeroen Meersmans ◽  
Guy Kirk ◽  
Adrian Williams

&lt;p&gt;Harvesting sugarcane (Saccharum officinarum) produces large quantities of biomass residues. We investigated the potential for converting these residues into biochar (recalcitrant carbon rich material) for soil carbon (C) sequestration. We modified a version of the RothC soil carbon model to follow changes in soil C stocks considering different amounts of fresh sugarcane residues and biochar (including recalcitrant and labile biochar fractions). We used Sao Paulo State (Brazil) as a case study due to its large sugarcane production and associated soil C sequestration potential.&lt;/p&gt;&lt;p&gt;Mechanical harvesting of sugarcane fields leaves behind &gt; 10 t dry matter of trash (leaves) ha&lt;sup&gt;-1&lt;/sup&gt; year&lt;sup&gt;-1&lt;/sup&gt;. Although trash blanketing increases soil fertility, an excessive amount is detrimental and reduces the subsequent crop yield. After the optimal trash blanketing amount, sugarcane cultivation still produces 5.9 t C ha&lt;sup&gt;-1&lt;/sup&gt; year&lt;sup&gt;-1&lt;/sup&gt; of excess trash and bagasse (processing residues) which are available for subsequent use.&lt;/p&gt;&lt;p&gt;The available residues could produce 2.5 t of slow-pyrolysis (550&amp;#176;C) biochar C ha&lt;sup&gt;-1&lt;/sup&gt; year&lt;sup&gt;-1&lt;/sup&gt;. The model predicts this could increase sugarcane field soil C stock on average by 2.4 &amp;#177; 0.4 t C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1&lt;/sup&gt;, after accounting for the climate and soil type variability across the State. Comparing different scenarios, we found that applying fresh residues into the field results in a smaller increase in soil C stock compared to the biochar because the soil C approaches a new equilibrium. For instance, adding 1.2 t of biochar C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; along with 3.2 t of fresh residue C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1 &lt;/sup&gt;increased the soil C stock by 1.8 t C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1 &lt;/sup&gt;after 10 years of repeated applications. In contrast, adding 0.62 t of biochar C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; with 4.5 t of fresh sugarcane residues C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1 &lt;/sup&gt;increased the soil carbon soil stock by 1.4 t C ha&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; year&lt;sup&gt;&amp;#8209;1&lt;/sup&gt; after 10 years of application. These are reductions 25% and 40% of the potential soil C accumulation rates compared with applying available residues as biochar.&amp;#160; &amp;#160;&lt;/p&gt;&lt;p&gt;We also tested the sensitivity of the model to biochar-induced positive priming (i.e. increased mineralization of soil organic C) using published values. This showed that the C sequestration balance remains positive over the long term, even considering an extremely high positive-priming factor. Upscaling our results to the total 5 Mha of sugarcane in Sao Paulo State, biochar application could sequester up to 50 Mt of CO&lt;sub&gt;2&lt;/sub&gt; equivalent per year, representing 31% of the emissions attributed to the State in 2016.&lt;/p&gt;&lt;p&gt;This study provides first insights into the sequestration potential of biochar application on sugarcane fields. Measurements of changes in soil C stocks in sugarcane field experiments are needed to further validate the model, and the emissions to implement the practice at large scale need to be taken into account. As the climate crisis grows, the need for greenhouse gas removal technologies becomes crucial. Assessing the net effectiveness of readily available technologies is essential to guide policy makers.&amp;#160;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document