scholarly journals Genetic diversity among proso millet (Panicum miliaceum) biotypes assessed by AFLP technique

2004 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
D. Karam ◽  
P. Westra ◽  
S.J. Nissen ◽  
S.M. Ward ◽  
J.E.F. Figueiredo

The Amplified Fragment Length Polymorphism (AFLP) technique was used to access genetic diversity between three domestic and nine wild proso millet biotypes from the United States and Canada. Eight primer combinations detected 39 polymorphic DNA fragments, with the genetic distance estimates among biotypes ranging from 0.02 to 0.04. Colorado-Weld County black seeded and Wyoming-Platte County were the most distinct biotypes according to the dissimilarity level. A UPGMA cluster analysis revealed two distinct groups of proso millet without any geographic association. Six weed biotypes exhibiting some characters of cultivated plants were grouped together with domesticated biotypes of proso millet while the three typical wild phenotypes were clearly clustered into another group according to AFLP markers.

2019 ◽  
Vol 144 (6) ◽  
pp. 379-386
Author(s):  
Yan Liu ◽  
Hailin Guo ◽  
Yi Wang ◽  
Jingang Shi ◽  
Dandan Li ◽  
...  

Seashore paspalum (Paspalum vaginatum) is a notable warm-season turfgrass. Certain germplasm resources are distributed in the southern regions of China. The objectives of this study were to investigate the genetic diversity and genetic variation of Chinese seashore paspalum resources. Morphological characteristics and sequence-related amplified polymorphism (SRAP) markers were used to assess genetic relationships and genetic variation among 36 germplasm resources from China and six cultivars from the United States. The results showed significant variation for 13 morphological characteristics among 42 tested seashore paspalum accessions, and that the phenotypic cv was, in turn, turf height > turf density > internode length > inflorescence density > leaf width > reproductive branch height > spikelet width > leaf length > spikelet number > inflorescence length > internode diameter > inflorescence width > spikelet length. According to the morphological characteristics and cluster analysis, 42 seashore paspalum accessions were divided into six morphological types. In total, 374 clear bands were amplified using 30 SRAP primer combinations; among these bands, 321 were polymorphic with 85.83% polymorphism. SRAP marker cluster analysis showed that 42 seashore paspalum accessions were grouped into seven major groups, with a genetic similarity coefficient ranging from 0.4385 to 0.9893 and genetic distance values ranging from 0.0108 to 0.8244. The high level of genetic diversity occurred among Chinese germplasm, and the genetic distance was relatively high between Chinese germplasm and cultivars introduced from the United States. The patterns in morphological trait variations and genetic diversity will be useful for the further exploitation and use of Chinese seashore paspalum resources.


2000 ◽  
Vol 90 (10) ◽  
pp. 1126-1130 ◽  
Author(s):  
Paul W. Tooley ◽  
Nichole R. O'Neill ◽  
Erin D. Goley ◽  
Marie M. Carras

Genetic diversity among isolates of Claviceps africana, the sorghum ergot pathogen, and isolates of other Claviceps spp. causing ergot on sorghum or other hosts, was analyzed by random amplified microsatellite (RAM) and amplified fragment length polymorphism (AFLP) analyses. Of the RAM primer sets tested, one revealed polymorphism in C. africana isolates, with Australian and Indian isolates possessing a unique fragment. AFLP analysis, in addition to clearly distinguishing Claviceps spp., revealed polymorphisms in C. africana. A group of isolates from the United States, Puerto Rico, and South Africa exhibited 95 to 100% similarity with one another. Several isolates from Isabela, Puerto Rico were 100% similar to an isolate from Texas, and another isolate from Puerto Rico was identical with one from Nebraska. Australian and Indian isolates showed greater than 90% similarity with isolates from the United States., Puerto Rico, and South Africa. A number of polymorphisms existed in the United States group, indicating that the recently introduced population contains multiple genotypes. Isolates of C. sorghicola, a newly described sorghum pathogen from Japan, were very distinct from other species via RAM and AFLP analyses, as were isolates from outgroups C. purpurea and C. fusiformis. Both RAM and AFLP analysis will be useful in determining future patterns of intercontinental migration of the sorghum ergot pathogen, with the AFLP method showing greater ability to characterize levels of intraspecific variation.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 877A-877
Author(s):  
Jiang Lu ◽  
Xianping Qu ◽  
Olusola Lamikanra

Two morphologically very distinct grapevines belonging to the subgenera Euvitis and Muscadinia of the genus Vitis are cultivated in the United States. The former is commonly called “bunch” grape, while the latter is usually called “muscadine.” Genetic diversity among these grapes was investigated based on random amplified polymorphic DNAs (RAPDs). Sixteen grape cultivars, with their parentage including V. rotundifolia, V. vinifera, and several American Vitis species, were used for the RAPD analysis. More than 200 RAPDs were produced from 20 random primers. More than 90% of which were polymorphic between the muscadine and the bunch grapes, while polymorphism was considerably low within the muscadine and the bunch grapes. The relationships of grapes between these two subgenera were estimated based on bandsharing and cluster analysis. The result based on the DNA analysis agrees with the isozyme data obtained from a separate study, which demonstrated that the muscadine grape shares very low common alleles with the American bunch grapes and the European grapes.


Plant Disease ◽  
2002 ◽  
Vol 86 (11) ◽  
pp. 1247-1252 ◽  
Author(s):  
Paul W. Tooley ◽  
Erin D. Goley ◽  
Marie M. Carras ◽  
Nichole R. O'Neill

Eighty-seven isolates of the sorghum ergot pathogen, Claviceps africana, from diverse geographic locations were analyzed using four different amplified fragment length polymorphism (AFLP) primer combinations to determine genetic relationships among isolates. Most isolates showed unique AFLP haplotypes, indicating that substantial genetic variation is present within C. africana populations. Two major groupings of isolates were observable, with ca. 70% similarity between the two groups. One group consisted of Australian, Indian, and Japanese isolates and the other of U.S., Mexican, and African isolates. In spite of overall high levels of genetic diversity observed in C. africana, isolates within the two major groups were between 75 and 100% similar. The observed associations of C. africana isolates from worldwide sources could be the result of intercontinental trade and/or movement of seed. The data indicate that Africa was the likely source of C. africana that has become established in the Americas since 1996. Analysis of additional isolates in future studies will reveal whether these groupings are being maintained or whether population subdivision or reshuffling may occur.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Vessela Mavrodieva ◽  
Delano James ◽  
Karen Williams ◽  
Sarika Negi ◽  
Aniko Varga ◽  
...  

Four of 19 Prunus germplasm accessions hand carried from the Ukraine into the United States without authorization were found to be infected with Plum pox virus (PPV). Of the three isolates characterized, isolates UKR 44189 and UKR 44191 were confirmed to be isolates of PPV strain W, and UKR 44188 was confirmed to be an isolate of PPV strain D. UKR 44189 and UKR 44191 are very closely related to the PPV strain W isolate LV-145bt (HQ670748) from Latvia. Nucleotide and amino acid sequence identities between these three isolates were greater than 99%. This indicates that the isolates are very closely related and likely originated from a common source. The high genetic diversity among PPV-W strain isolates allowed the identification of potential recombination events between PPV isolates. It appears also that GF 305 peach and Prunus tomentosa are not hosts for the PPV isolate UKR 44189.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Runzhi Li ◽  
Shiwen Wang ◽  
Liusheng Duan ◽  
Zhaohu Li ◽  
Michael J. Christoffers ◽  
...  

Weed genetic diversity is important for understanding the ability of weeds to adapt to different environments and the impact of herbicide selection on weed populations. Genetic diversity within and among six wild oat populations in China varying in herbicide selection pressure and one population in North Dakota were surveyed using 64 polymorphic alleles resulting from 25 microsatellite loci. Mean Nei's gene diversity (h) for six wild oat populations from China was between 0.17 and 0.21, and total diversity (HT) was 0.23. A greater proportion of this diversity, however, was within (Hs= 0.19) rather than among (Gst= 0.15) populations. For the wild oat population from the United States,h= 0.24 andHT= 0.24 were comparable to the values for the six populations from China. Cluster analysis divided the seven populations into two groups, where one group was the United States population and the other group included the six Chinese populations. The genetic relationships among six populations from China were weakly correlated with their geographic distribution (r= 0.22) using the Mantel test. Minimal difference in gene diversity and small genetic distance (Nei's distance 0.07 or less) among six populations from China are consistent with wide dispersal of wild oat in the 1980s. Our results indicate that the wild oat populations in China are genetically diverse at a level similar to North America, and the genetic diversity of wild oat in the broad spatial scale is not substantially changed by environment, agronomic practices, or herbicide usage.


2021 ◽  
Author(s):  
Kyle M Lewald ◽  
Antoine Abrieux ◽  
Derek A Wilson ◽  
Yoosook Lee ◽  
William R Conner ◽  
...  

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. To improve on previous studies examining genetic structure of D. suzukii, we sequenced whole genomes of 237 individual flies collected across the continental U.S., as well as several representative sites in Europe, Brazil, and Asia, to identify hundreds of thousands of genetic markers for analysis. We analyzed these markers to detect population structure, to reconstruct migration events, and to estimate genetic diversity and differentiation within and among the continents. We observed strong population structure between West and East Coast populations in the U.S., but no evidence of any population structure North to South, suggesting there is no broad-scale adaptations occurring in response to the large differences in regional weather conditions. We also find evidence of repeated migration events from Asia into North America have provided increased levels of genetic diversity, which does not appear to be the case for Brazil or Europe. This large genomic dataset will spur future research into genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


Sign in / Sign up

Export Citation Format

Share Document