scholarly journals Application of brassinosteroid to Tabebuia alba (Bignoniaceae) plants

2000 ◽  
Vol 12 (3) ◽  
pp. 187-194 ◽  
Author(s):  
ELIZABETH ORIKA ONO ◽  
TERUKO NAKAMURA ◽  
SÍLVIA RODRIGUES MACHADO ◽  
JOÃO DOMINGOS RODRIGUES

The objective of this study was to observe the effects of brassinosteroid, gibberelin, and auxin application on the development and foliar anatomy of Tabebuia alba (Cham.) Sandw. seedlings. T. alba seedlings were grown in plastic bags with fertilized soil and treated with the following: 1- water (control); 2- brassinolide (BR1) 0.104 mM; 3- BR1 0.208 mM; 4- 3-indoleacetic acid (IAA) 0.2854 mM; 5- IAA 0.5708 mM; 6- GA3 (gibberellin A3) 0.1443 mM; 7- GA3 0.2887 mM; 8- GA3 0.072 mM + IAA 0.1427 mM; 9- GA3 0.1443 mM + IAA 0.2854 mM; 10- GA3 0.072 mM + BR1 0.052 mM; and 11- GA3 0.1443 mM + BR1 0.104 mM. Plant height and petiole length were measured before the treatments and 21 days after application of the growth regulators. These data allowed the calculation of stem and petiole growth rates. The results showed that GA3 + brassinolide produced the highest stem and petiole growth rates and brassinolide application stimulated petiole growth but not stem growth. The anatomical study of leaves showed alterations in blade and petiole thickness, palisade and spongy parenchyma height, and epidermis cells.

2010 ◽  
Vol 16 (5) ◽  
Author(s):  
D. Varga ◽  
L. Udvardy

According to previous studies some anatomical features seem to be connected with resistance or susceptibility to scab caused by Venturia ineaqulis (Cke./Wint.) in case of a given cultivar. Study of leaf anatomy of three scab resistant (‘Prima’, ‘Florina’, MR–12) and two susceptible (‘Watson Jonathan’, ‘Golden Delicious Reinders’) apple cultivars have been made. Preserved preparations made of leaves has been studied by light microscope. Studied parameters were: thickness of leaf blade, thickness of palisade and spongy parenchyma, thickness of epidermal cells, thickness of the cuticle. By measuring leaf thickness and epidermal cell thickness visible differences appeared in certain cultivars, while most conspicuous difference has been shown in thickness of the cuticle.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 622
Author(s):  
Alexandra Ciorîță ◽  
Septimiu Cassian Tripon ◽  
Ioan Gabriel Mircea ◽  
Dorina Podar ◽  
Lucian Barbu-Tudoran ◽  
...  

Morphological and anatomical traits of the Vinca leaf were examined using microscopy techniques. Outdoor Vinca minor and V. herbacea plants and greenhouse cultivated V. major and V. major var. variegata plants had interspecific variations. All Vinca species leaves are hypostomatic. However, except for V. minor leaf, few stomata were also present on the upper epidermis. V. minor leaf had the highest stomatal index and V. major had the lowest, while the distribution of trichomes on the upper epidermis was species-specific. Differentiated palisade and spongy parenchyma tissues were present in all Vinca species’ leaves. However, V. minor and V. herbacea leaves had a more organized anatomical aspect, compared to V. major and V. major var. variegata leaves. Additionally, as a novelty, the cellular to intercellular space ratio of the Vinca leaf’s mesophyll was revealed herein with the help of computational analysis. Lipid droplets of different sizes and aspects were localized in the spongy parenchyma cells. Ultrastructural characteristics of the cuticle and its epicuticular waxes were described for the first time. Moreover, thick layers of cutin seemed to be characteristic of the outdoor plants only. This could be an adaptation to the unpredictable environmental conditions, but nevertheless, it might influence the chemical composition of plants.


2010 ◽  
Vol 10 ◽  
pp. 2112-2129 ◽  
Author(s):  
Tim Jäger ◽  
Claudia Scherr ◽  
Meinhard Simon ◽  
Peter Heusser ◽  
Stephan Baumgartner

This study evaluated the effects of homeopathically potentized Arsenicum album, nosode, and gibberellic acid in a bioassay with arsenic-stressed duckweed (Lemna gibbaL.). The test substances were applied in nine potency levels (17x, 18x, 21x–24x, 28x, 30x, 33x) and compared with controls (unsuccussed and succussed water) regarding their influence on the plant’s growth rate. Duckweed was stressed with arsenic(V) for 48 h. Afterwards, plants grew in either potentized substances or water controls for 6 days. Growth rates of frond (leaf) area and frond number were determined with a computerized image analysis system for different time intervals (days 0–2, 2–6, 0–6). Five independent experiments were evaluated for each test substance. Additionally, five water control experiments were analyzed to investigate the stability of the experimental setup (systematic negative control experiments). All experiments were randomized and blinded. The test system exhibited a low coefficient of variation (≈1%). Unsuccussed and succussed water did not result in any significant differences in duckweed growth rate. Data from the control and treatment groups were pooled to increase statistical power. Growth rates for days 0–2 were not influenced by any homeopathic preparation. Growth rates for days 2–6 increased after application of potentized Arsenicum album regarding both frond area (p< 0.001) and frond number (p< 0.001), and by application of potentized nosode (frond area growth rate only,p< 0.01). Potencies of gibberellic acid did not influence duckweed growth rate. The systematic negative control experiments did not yield any significant effects. Thus, false-positive results can be excluded with high certainty. To conclude, the test system withL. gibbaimpaired by arsenic(V) was stable and reliable. It yielded evidence for specific effects of homeopathic Arsenicum album preparations and it will provide a valuable tool for future experiments that aim at revealing the mode of action of homeopathic preparations. It may also be useful to investigate the influence of external factors (e.g., heat, electromagnetic radiation) on the effects of homeopathic preparations.


2004 ◽  
Vol 4 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Rodolfo Salm

This study examines aspects of the stem density and growth of two large arborescent palms Attalea maripa and Astrocaryum aculeatum and discusses their implication for the palm trees distribution in Amazonia. Stem density and growth were investigated through both laboratory measurements and field estimates of growth rates. The densities of stem samples collected within one individual of each studied species were very distinct. The samples of A. maripa stem were more homogeneous in density than those of A. aculeatum, both from the internal to the external, and from the lower to the upper parts of the stem. Field estimates of stem growth rates revealed that A. maripa growth is also more constant through development in height. Short A. aculeatum palms had faster growth rates than A. maripa, as they get taller, stem growth rates are reduced and approach A. maripa rates. The implications for arborescent palms distribution across Amazonian forests are discussed.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 417E-418 ◽  
Author(s):  
Montree Issarakraisila ◽  
Ravie Sethpakdee

Leaf anatomy of young rambutan (Nephelium lappaceum Linn.), durian (Durio zibethinus Murray), mangosteen (Garcinia mangostana Linn.), and longkong (Aglaia dookoo Griff.) potted plants grown under different light intensity (100%, 55%, 40%, or 25% of full sun) were observed. The thickness of both palisade and spongy parenchyma decreased as the light intensity decreased. This resulted in a decrease of lamina thickness when the light was lower. An exception occurred in mangosteen when the thickness of both palisade and spongy parenchyma in leaf grown under full sunlight were lower than in leaves grown under 55% or 40% full sun. The thickness ratio of palisade and spongy tissue in rambutan and durian decreased as light intensity decreased. While the ratios in mangosteen and longkong leaves grown under full sunlight were lower than the ratios of leaves grown under 55% or 40% of full sun. The frequency of stomata also decreased as the light intensity decreased. The thickness of palisade tissue of leaves grown under 55% of full sun in rambutan, durian, mangosteen, and longkong were 70, 110, 110, and 55 μm, respectively. The thickness of spongy tissue of leaves grown under 55% of full sun in rambutan, durian, mangosteen, and longkong were 60, 30, 410, and 145 μm, respectively. The thickness of leaves grown under 55% of full sun in rambutan, durian, mangosteen, and longkong were 186, 230, 565, and 233 μm, respectively. The number of stomata per square millimeter of leaves grown under 55% of full sun in rambutan, durian, mangosteen, and longkong were 437, 221, 133, and 301, respectively. Photosynthesis efficiency and light adaptation were discussed.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1034E-1035 ◽  
Author(s):  
Nickolee Zollinger ◽  
Teresa Cerny-Koenig ◽  
Roger Kjelgren ◽  
Rich Koenig ◽  
Kelly Kopp

Although salinity is becoming an increasing concern for landscape plants in many areas of the West, few studies have been carried out to evaluate salinity responses of ornamental plants, especially herbaceous perennials. We investigated salinity tolerance of four traditionally grown and four Intermountain West native ornamental herbaceous perennials. Penstemo×mexicali `Red Rocks', Leucanthemum×uperbum `Alaska', Echinacea purpurea, Lavandula angustifolia, Geranium viscosissimum, Eriogonum jamesii, Penstemon palmeri, and Mirabilismultiflora were irrigated with water containing a mixture of 2 CaCl2: 1 NaCl at salinity levels of 0.33 (tap water control), 2.2, 5.4, and 8.3 dS·m-1 for 8 weeks. Growth, visual quality, and gas exchange were assessed. Mirabilis multiflora and L.×uperbum `Alaska' showed high salt tolerance based on visual quality. No noticeable leaf necrosis was observed for either species at any salinity level. However, over the 8-week period, growth rates for L. superbumwere reduced by 35%, 58%, and 72% compared to the control for the 2.2, 5.4, and 8.3 dS·m-1 salinity levels, respectively. The decrease in growth did not reduce visual quality. Growth rates for M. multiflora were slightly higher than the control for the 2.2 and 5.4 dS·m-1 salinity levels and dropped about 20% at the highest salinity level. Echinaceapurpureashowed the lowest tolerance to salinity, as evidenced by substantial margin burn at all salinity levels as well as high mortality; all plants in the highest salinity treatment died.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Tommaso Jucker ◽  
Charlotte Grossiord ◽  
Damien Bonal ◽  
Olivier Bouriaud ◽  
Arthur Gessler ◽  
...  

2020 ◽  
Vol 77 (4) ◽  
Author(s):  
Aylin Güney ◽  
Roman Zweifel ◽  
Semra Türkan ◽  
Reiner Zimmermann ◽  
Magnus Wachendorf ◽  
...  

Abstract Key message Patterns of stem radial variations showed thatCedrus libaniA. Rich. was less limited by summer drought than co-occurringJuniperus excelsaM. Bieb.Cedrus libanirecovered faster from tree water deficit and showed significantly higher radial growth rates and annual stem increments thanJ. excelsa. However, the ability ofJ. excelsato grow more hours per year may indicate a potential benefit in more extreme conditions. Context Knowledge about species-specific drought responses is needed to manage productive forests in drought prone areas. Under water shortage, trees commonly show stem shrinkage, which is assumed to inhibit growth. Aims We investigated whether the two co-existing conifers Juniperus excelsa M. Bieb. and Cedrus libani A. Rich. (growing at the Taurus Mountains, SW-Turkey) show differences in water relations and stem growth in order to evaluate their respective drought tolerance. Methods Stem radius changes were hourly monitored over 2 years using high-resolution point dendrometers. Radial stem growth, tree water deficit-induced stem shrinkage, and maximum daily shrinkage were extracted from stem radius change measurements, investigated for their patterns, and related to environmental conditions. Results Cedrus libani recovered from tree water deficit under higher temperature and vapor pressure deficit than J. excelsa. The number of hours during which stem growth occurred was higher for J. excelsa; however, growth rates and annual increments were significantly lower than in C. libani. Both species showed highest maximum daily shrinkage during the driest months indicating the ability to maintain gas exchange all year round. Conclusion Juniperus excelsa showed a more conservative growth strategy while C. libani was less limited by summer drought and showed more annual stem increment under the conditions investigated.


2020 ◽  
Vol 30 (4) ◽  
pp. 344-351
Author(s):  
KJ Mitu ◽  
MA Islam ◽  
P Biswas ◽  
S Marzia ◽  
MA Ali

Experiments were conducted in order to investigate anatomical changes in leaves and stems of roadsides plants namely Mango (Mangifera indica), SilKoroi (Albizia procera) and Mahagony (Sweatenia mahogany). Plants that grown nearby roadside areas were exposed to various kinds of pollutants. To carry out the experiment, samples (Fresh leaves and Stems) were collected from two polluted sites and one control site. For anatomical study leaves and stems were cut into sections in the laboratory and changes were identified under the light microscopy. Results revealed that leaves of selected roadside plants had reduced cell size with black dot like substance deposited in the epidermis, palisade and spongy parenchyma in the polluted sites. But leaves of control site plants had normal anatomy. Meanwhile stem showed changes in vascular bundle of pollution affected sites but no change was found in control site. These results highlighted the importance of anatomical data for precious diagnosis of injury and to determine the sensitivity of roadside plants to different environmental pollutants. Progressive Agriculture 30 (4): 344-351, 2019


1999 ◽  
Vol 34 (8) ◽  
pp. 1361-1365 ◽  
Author(s):  
Adaucto Bellarmino de Pereira-Netto ◽  
Antonio Carlos Gabriele ◽  
Hilton Silveira Pinto

Kudzu is a cover crop that has escaped cultivation in some subtropical and warm temperate regions. Kudzu has previously demonstrated broad intraspecific physiological plasticity while colonizing new environments. The objective of this paper was to investigate characteristics of kudzu leaflet anatomy that might contribute to its successful growth in climatically distinct environments, and to escape cultivation as well. Fresh and fixed leaflet strips of field-grown plants were analyzed. The lower epidermis of kudzu showed a higher frequency of stomata (147 ± 19 stomata mm-2) than the upper epidermis (26 ± 17 stomata mm-2). The average number of trichomes per square milimeter was 8 for both the upper and the lower epidermis. The average trichome length was 410 ± 200 mum for the upper epidermis and 460 ± 190 mum for the lower epidermis. Cuticle thickness was not considerably different between lower and upper epidermis. The leaflet blade consisted basically of two layers (upper and lower) of unicellular epidermis, two layers of palisade parenchyma and one layer of spongy parenchyma. One layer of paraveinal mesophyll was found between palisade and spongy parenchyma. In conclusion, leaflets of kudzu present anatomical characteristics that might contribute to the broad physiological plasticity shown by kudzu.


Sign in / Sign up

Export Citation Format

Share Document