scholarly journals (446) Salinity Tolerance of Eight Ornamental Herbaceous Perennials

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1034E-1035 ◽  
Author(s):  
Nickolee Zollinger ◽  
Teresa Cerny-Koenig ◽  
Roger Kjelgren ◽  
Rich Koenig ◽  
Kelly Kopp

Although salinity is becoming an increasing concern for landscape plants in many areas of the West, few studies have been carried out to evaluate salinity responses of ornamental plants, especially herbaceous perennials. We investigated salinity tolerance of four traditionally grown and four Intermountain West native ornamental herbaceous perennials. Penstemo×mexicali `Red Rocks', Leucanthemum×uperbum `Alaska', Echinacea purpurea, Lavandula angustifolia, Geranium viscosissimum, Eriogonum jamesii, Penstemon palmeri, and Mirabilismultiflora were irrigated with water containing a mixture of 2 CaCl2: 1 NaCl at salinity levels of 0.33 (tap water control), 2.2, 5.4, and 8.3 dS·m-1 for 8 weeks. Growth, visual quality, and gas exchange were assessed. Mirabilis multiflora and L.×uperbum `Alaska' showed high salt tolerance based on visual quality. No noticeable leaf necrosis was observed for either species at any salinity level. However, over the 8-week period, growth rates for L. superbumwere reduced by 35%, 58%, and 72% compared to the control for the 2.2, 5.4, and 8.3 dS·m-1 salinity levels, respectively. The decrease in growth did not reduce visual quality. Growth rates for M. multiflora were slightly higher than the control for the 2.2 and 5.4 dS·m-1 salinity levels and dropped about 20% at the highest salinity level. Echinaceapurpureashowed the lowest tolerance to salinity, as evidenced by substantial margin burn at all salinity levels as well as high mortality; all plants in the highest salinity treatment died.

HortScience ◽  
2006 ◽  
Vol 41 (6) ◽  
pp. 1493-1497 ◽  
Author(s):  
Genhua Niu ◽  
Denise S. Rodriguez

Use of recycled water to irrigate urban landscapes may be inevitable, because the freshwater supply has been diminishing and the population continues to grow in the arid and semiarid southwestern United States. However, little information exists on the performance of landscape plants irrigated with nonpotable water. Two greenhouse studies were conducted during the summer and the fall to characterize the relative salt tolerance of five herbaceous perennials by irrigating the plants with a saline solution at an electrical conductivity (EC) of 0.8 dS·m–1 (tap water), 2.0 dS·m–1, or 4.0 dS·m–1. In the summer study, after 10 weeks of treatment, Achillea millefolium L., Gaillardia aristata Foug., and Salvia coccinea Juss ex J. had an aesthetically acceptable appearance for landscape performance (visual quality scores of 4 points or more), whereas Agastache cana (Hook.) Woot. & Standl. and Echinacea purpurea (L.) Moench had relatively low tolerance to salinity. Dry weight of shoots of A. millefolium, A. cana, and G. arstata was lower at elevated salinity levels. In the fall study, A. millefolium, E. purpurea, G. arstata, and S. coccinea had acceptable growth and visual quality at elevated salinity levels, whereas A. cana had lower quality and reduced growth. Dry weight of shoots was lower in G. arstata and A. millefolium at an EC of 2.0 dS·m–1 or 4.0 dS·m–1. Leaf osmotic potential of all species in the summer experiment was significantly lower at higher salinity compared with the control. In the fall experiment, leaf osmotic potential in A. millefolium, E. purpurea, and G. aristata at 4 dS·m–1 was lower compared with lower salinity treatment and the control. Leaf osmotic potential in the fall was higher than that of the same species at the same salinity level in the summer experiment, indicating that plants in the fall were less stressed than in the summer. Combined the results from both experiments, the authors concluded that A. millefolium, G. arstata, and S. coccinea had a relatively high salt tolerance (as much as 4 dS·m–1 of irrigation water under greenhouse conditions) among the tested species, whereas A. cana and E. purpurea were not tolerant to salt and should not be irrigated with low-quality water.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 529-534 ◽  
Author(s):  
Nickolee Zollinger ◽  
Richard Koenig ◽  
Teresa Cerny-Koenig ◽  
Roger Kjelgren

The authors investigated salinity tolerance of four intermountain western United States native (Penstemon palmeri, Mirabilis multiflora, Geranium viscosissimum, and Eriogonum jamesii) and four common (Echinacea purpurea, Lavandula angustifolia, Leucanthemum ×superbum ‘Alaska’, and ×Penstemon mexicali ‘Red Rocks’) ornamental herbaceous perennials. Each was irrigated with a solution containing 2 CaCl2 : 1 NaCl (m ratio) at salinity levels of 0 (control), 1000, 3000, and 5000 mg·L−1 during two 8-week experiments. They measured weekly visual quality and gas exchange and final shoot and root dry weights. Mirabilis multiflora, L. ×superbum, and L. angustifolia maintained high visual quality and 100% survival across salinity levels. However, dry weights for L. ×superbum decreased at salt levels ≥ 3000 mg·L−1 in both experiments and for L. angustifolia in one experiment. Mortality rates of 12% to 100% were observed for the remaining five species irrigated with 3000 and 5000-mg·L−1 solutions. Visual quality of P. palmeri, G. viscosissimum, and E. purpurea varied with time of year the experiment was conducted, with low visual quality associated with high temperatures and light intensities, whereas dry matter and gas exchange responses to salinity were similar between the two experiments. Penstemon ×mexicali and E. jamesii exhibited high mortality, low visual quality, and low gas exchange in the case of E. jamesii at high salinity treatments regardless of when experiments were conducted. Based on visual quality responses, M. multiflora, L. ×superbum, and L. angustifolia are relatively more salt tolerant, and P. ×mexicali and E. jamesii are relatively more intolerant, than the three other species. Penstemon palmeri, G. viscosissimum, and E. purpurea exhibited intermediate tolerance to salinity with acceptable quality during periods of cool temperatures and lower light intensities.


2016 ◽  
Vol 5 (2) ◽  
pp. 104
Author(s):  
Helale Bahrami ◽  
Amir Ostadi Jafari ◽  
Jamshid Razmjoo

<p class="emsd-body"><span lang="EN-GB">Seeds of ten sesame cultivars (Karaj, Darab, Safiabad, Jiroft, Borazjan, Yellow-white, Felestin, Ultan, Isfahan and Abpakhsh) were sown into soil filled pots in 2008 and 2009. Pots were watered with six levels of salts (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup> NaCl) until full maturity. Plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of cultivars were measured. Increasing salinity caused significant reduction in plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of all cultivars. However, there were significant differences among the cultivars for measured traits for each salinity level. Based on seed oil yield data, Safiabad and Kraj at 0.0038ds.m<sup>-1</sup>, Safiabad and Ultan at 4.89ds.m<sup>-1</sup>, Ultan, Safiabad and Darab at 8.61 salinity levels were the superior cultivars. High variability in tolerance to salinity among the tested sesame cultivars suggests that selection of more salt tolerant cultivars for planting or breeding purposes is possible.</span></p><p class="emsd-body"><span lang="EN-GB">Highlights</span></p><p class="emsd-body"><span lang="EN-GB">Effects of contrasting salinity levels (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup>NaCl) on sesame cultivars were tested. Salinity reduced plant growth and yield and seed oil and protein contents. However, there were significant differences among the cultivars for measured traits for each salinity level. </span></p>


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 116-120 ◽  
Author(s):  
Matteo Serena ◽  
Bernd Leinauer ◽  
Rossana Sallenave ◽  
Marco Schiavon ◽  
Bernd Maier

Germination of five turfgrass species [‘Barrister’ kentucky bluegrass (Poa pratensis L.), ‘Barvado’ tall fescue (Festuca arundinacea Schreb.), ‘Premier II’ perennial ryegrass (Lolium perenne L.), ‘Bargusto’ bermudagrass (Cynodon dactylon L. Pers.), and ‘Sea Spray’ seashore paspalum (Paspalum vaginatum O. Swartz)] from coated (ZEBA® cornstarch coating; Absorbent Technologies Inc., Beaverton, OR) and uncoated seeds was evaluated on both filter paper and agar. Final germination percentage (FGP) and germination rate (GR) were determined at salinity levels of 0.6 (tap water, control), 2.2 (saline groundwater from a local shallow aquifer), and 7.0, 12.5, and 22.5 dS·m−1 [sodium chloride and calcium chloride (1:1, w:w) dissolved in tap water]. Final germination percentage for kentucky bluegrass, perennial ryegrass, and tall fescue was greater in agar at all salinity levels but was unaffected by the medium at any of the salinities except for 7 dS·m−1 for bermudagrass and seashore paspalum. Coated seashore paspalum and coated perennial ryegrass seed exhibited greater germination than uncoated seed at four of the five salinity levels. Seed coating had no effect on FGP of bermudagrass at any salinity level and coated kentucky bluegrass seed showed reduced germination at 0.6 and 7.0 dS·m−1. Final germination percentage for seashore paspalum improved from 22% to 54% at 12.5 dS·m−1 and from 8% to 20% at 22.5 dS·m−1 when coated seed was used instead of uncoated seed. Germination rates were unaffected by salinity levels ranging from 0.6 to 12.5 dS·m−1 and were higher on agar (10%/day) than on paper (8%/day). Our study suggests that the choice of medium can influence the outcome of germination tests and that results can also vary depending on the salinity level tested and whether the seed are coated.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2170-2174 ◽  
Author(s):  
Y.L. Qian ◽  
J.M. Fu

Salt problems in turfgrass sites are becoming more common. The effects of mowing height on salinity tolerance and associated mechanisms are not well understood. The objective of this study was to examine the effects of mowing height and the level of salinity on turf quality, canopy photosynthetic rate (Pn), total nonstructure carbohydrate (TNC) content, shoot reducing sugar content (RSC), Na+ and K+ content in shoots and roots of creeping bentgrass (Agrostis palustris Huds.). Sod pieces of `L-93' were grown in a greenhouse for over 7 months. Plants were subjected to three mowing heights: 6.4, 12.7, and 25.4 mm, and to four salinity levels of irrigation water: control, 5 dS·m–1, 10 dS·m–1, and 15 dS·m–1 prepared using ocean salts. Increasing salinity resulted in reduced turf quality, increased shoot Na+, reduced K+, and reduced K to Na ratio, to a greater extent for bentgrass mowed at 6.4 mm mowing height. Reducing sugar content in shoot increased with increasing salinity level except at 15 dS·m–1 and 6.4 mm mowing regime where RSC declined. Compared to the 25.4 mm mowing height, mowing height at 6.4 mm caused 32-39% reduction in TNC, a 25% to 37% increase in Na+ content, and 45% to 51% decrease in K content in shoots, which resulted in substantial decrease in K/Na ratio. These results demonstrated that the reduction of creeping bentgrass salt tolerance under low mowing height was associated with carbohydrate depletion that reduced the plant's genetic abilities to generate osmo-protectants (such as reducing sugar), to reduce Na+ accumulation in shoots, and to selectively uptake and transport K+. Therefore, a moderate increase in mowing height could improve salinity tolerance of creeping bentgrass.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1054A-1054
Author(s):  
Raul I. Cabrera ◽  
L. Rahman ◽  
Genhua Niu ◽  
Cynthia McKenney ◽  
Wayne Mackay

In this preliminary study, we evaluated the salinity tolerance of selected herbaceous perennials. Liners of Rudbeckia hirta `Becky Orange', Phlox paniculata `John Fanick', Coreopsis grandiflora `Early Sunrise', Lantana ×hybrida `New Gold' and Cuphea hyssopifolia `Allyson' were transplanted to 4-gal plastic containers filled with peat moss: pine bark: sand (3:1:1) medium amended with dolomite, Micromax and Osmocote 18-6-12 (at 2, 0.6, and 6 kg·m3, respectively). The plants were irrigated for 14 weeks with tap water containing 0, 1.5, 3, 6, 12, and 24 mM of NaCl: CaCl2 salt mixture (2:1 molar ratio). Increasing salt stress had differential effects on plant growth and quality, with Rudbeckia and Phlox being the most adversely affected even by the lowest salt treatment of 1.5 mM, with dry weight reductions of ∼25% compared to the controls. Conversely, Lantana and Cuphea tolerated extremely well salinity up to 12 mM, where dry weight reductions were less than 10% of the nonsalinized controls. The Lantana and Cuphea plants also presented the lowest leaf Cl accumulation with increasing salinity, whereas Coreopsis showed the highest Cl accumulations at any salinity level. Plots of leaf Cl concentration against dry weights showed steeply declining relationships for Rudbeckia and Phlox plants, confirming our observations and assessment that these species are to be considered salt-sensitive. Leaf Na accumulation is currently being analyzed.


2015 ◽  
Vol 17 (1) ◽  
pp. 89-94 ◽  
Author(s):  
RK Roy ◽  
M Robbani ◽  
M Ali ◽  
SK Bhowal ◽  
ANM Erfan

An experiment was conducted at the Germplasm Centre, Department of Horticulture, Patuakhali Science and Technology University (PSTU) during the period from July 2011 to March 2013 to study the performance of selected mango rootstocks in the saline area in Bangladesh. The experiment consisted of four mango rootstock lines collected from Rangpur, Dumki, Khulna and Kuakata, and five salinity treatments namely control (0 dSm-1), low (4 dSm-1), medium (6 dSm-1), high (8 dSm-1) and very high (10 dSm-1). A two factor experiment was conducted in a Randomized Complete Block Design (factorial) with four replications. Results revealed that rootstock line and salinity levels had significant influences on various crop characters viz. length of rootstocks, diameter of rootstocks, number of leaves and percent rootstocks success and survivability. In case of rootstocks, the longest rootstock length (41.38 cm), highest number of leaves (37.58) and survivability (71.73%) were recorded in Rangpur line. In case of salinity treatments, rootstock diameter (16.09 mm), number of leaves/graft (36.47) and survivability (67.37%) were recorded in low salinity treatment. Interaction of rootstock lines and different salinity treatments showed significant variation on the length and diameter of rootstocks at 120 DAT. The maximum diameter of rootstock (17.63 mm) was recorded in high (8 dSm-1) salinity treatment in rootstock line of Kuakata, followed by the same stages of rootstock lines of Khulna (17.56 mm). The longest rootstock (46.75 cm) was recorded in control treatment (0 dSm-1) with rootstock line of Rangpur followed by the same stages of rootstock (41.75 cm) with medium salinity treatment (6 dSm-1). Rangpur rootstock line performed best from 0-8 dSm-1 salinity. The overall salinity tolerance was graded as follows: Rangpur rootstock line > Dumki rootstock line > Kuakata rootstock line > Khulna rootstock line.Bangladesh Agron. J. 2014, 17(1): 89-94


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 712
Author(s):  
Md Sarowar Alam ◽  
Mark Tester ◽  
Gabriele Fiene ◽  
Magdi Ali Ahmed Mousa

Salinity is one of the most significant environmental stresses for sustainable crop production in major arable lands of the globe. Thus, we conducted experiments with 27 tomato genotypes to screen for salinity tolerance at seedling stage, which were treated with non-salinized (S1) control (18.2 mM NaCl) and salinized (S2) (200 mM NaCl) irrigation water. In all genotypes, the elevated salinity treatment contributed to a major depression in morphological and physiological characteristics; however, a smaller decrease was found in certain tolerant genotypes. Principal component analyses (PCA) and clustering with percentage reduction in growth parameters and different salt tolerance indices classified the tomato accessions into five key clusters. In particular, the tolerant genotypes were assembled into one cluster. The growth and tolerance indices PCA also showed the order of salt-tolerance of the studied genotypes, where Saniora was the most tolerant genotype and P.Guyu was the most susceptible genotype. To investigate the possible biochemical basis for salt stress tolerance, we further characterized six tomato genotypes with varying levels of salinity tolerance. A higher increase in proline content, and antioxidants activities were observed for the salt-tolerant genotypes in comparison to the susceptible genotypes. Salt-tolerant genotypes identified in this work herald a promising source in the tomato improvement program or for grafting as scions with improved salinity tolerance in tomato.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 203
Author(s):  
Denisa Avdouli ◽  
Johannes F. J. Max ◽  
Nikolaos Katsoulas ◽  
Efi Levizou

In a cascade hydroponic system, the used nutrient solution drained from a primary crop is directed to a secondary crop, enhancing resource-use efficiency while minimizing waste. Nevertheless, the inevitably increased EC of the drainage solution requires salinity-tolerant crops. The present study explored the salinity-tolerance thresholds of basil to evaluate its potential use as a secondary crop in a cascade system. Two distinct but complemented approaches were used; the first experiment examined basil response to increased levels of salinity (5, 10 and 15 dS m−1, compared with 2 dS m−1 of control) to identify the limits, and the second experiment employed a cascade system with cucumber as a primary crop to monitor basil responses to the drainage solution of 3.2 dS m−1. Growth, ascorbate content, nutrient concentration, and total amino acid concentration and profile were determined in both experiments. Various aspects of basil growth and biochemical performance collectively indicated the 5 dS m−1 salinity level as the upper limit/threshold of tolerance to stress. Higher salinity levels considerably suppressed fresh weight production, though the total concentration of amino acids showed a sevenfold increase under 15 dS m−1 and 4.5-fold under 5 and 10 dS m−1 compared to the control. The performance of basil in the cascade system was subject to a compromise between a reduction of fresh produce and an increase of total amino acids and ascorbate content. This outcome indicated that basil performed well under the conditions and the system employed in the present study, and might be a good candidate for use as a secondary crop in cascade-hydroponics systems.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 190
Author(s):  
Fawzy I. Magouz ◽  
Mohamed A. Essa ◽  
Mustafa Matter ◽  
Abdallah Tageldein Mansour ◽  
Ahmed Gaber ◽  
...  

Copepods are one of the most abundant and diverse live food sources for mesopelagic and bathypelagic fishes and crustaceans. They could contribute to the overlap of the transition period from live feed to an artificial weaning diet in marine larvae production. However, the culture conditions still need optimization to provide sufficient production to cover the increasing demand for marine hatcheries. Therefore, the present study investigated the effects of different salinity levels (5, 10, 15, 20, 25, and 30 ppt) on the population growth, growth rate, and population composition (males, females, copepodite, and nauplii ratio) of the marine copepod, Oithona nana. The experiment continued for 15 days, under laboratory-controlled conditions of temperature (27 ± 1 °C), pH (7.7 ± 0.15), and continuous gentle aeration in 30 L glass aquaria. The copepod culture aquaria were supplemented with a mixture of soybean and yeast (0.5 g 10−6 individual−1 24-h−1) as a feed source. The highest significant population growth and population growth rate of O. nana were achieved with a salinity level of 20 ppt. Regarding population composition, O. nana cultured at the salinity level of 20 ppt recorded the highest significant percentages of copepodite and nauplii. The results concluded that copepod, O. nana, is capable of withstanding abrupt changes in the salinity, but there are limits to their tolerance, with an optimal salinity level of 20 ppt. This salinity level achieved the highest population growth and the highest percentages of copepodite and nauplii of marine Copepoda, O. nana.


Sign in / Sign up

Export Citation Format

Share Document