scholarly journals Phosphorus availability in a low pH highly weathered soil as affected by added salts

1995 ◽  
Vol 25 (2) ◽  
pp. 219-222 ◽  
Author(s):  
Paulo Roberto Ernani ◽  
Stanley Arthur Barber

Concentration and identity of cations and anions in the soil solution may affect soil P reactions and thus P availability. The magnitude of these reactions was evaluated in this research after application of various salts to a highly weathered low pH soil. Chloride, nitrate, and sulfate salts of Na, NH4, K, Ca, Mg, Sr, or Cu were added to the soil after addition of 360mg P/kg trying to simulate ion concentrations around granules of fertilizers in the soil. Thirty days later, P was determined in the soil solution (Pli) and on the solid phase (Psi). The soil samples of some treatments were leached with water and three days later a new soil solution was displaced. Separate addition of all salts increased Pli, except NaCl at the lowest rate. The increase of Pli was highly associatcd with amount of native cations displaced to the soil solution by the applied salts. Salt solubility, concentration, and sometimes identity of cation and anion also influenced Pli. Some salts decreased Psi, but this was not correlated with any soil property measured. The effects caused by salts on Pli and Psi disappeared after leaching the soil samples.

Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 227 ◽  
Author(s):  
I. C. R. Holford

Phosphorus (P) is the most important nutrient element (after nitrogen) limiting agricultural production in most regions of the world. It is extremely chemically reactive, and more than 170 phosphate minerals have been identified. In all its natural forms, including organic forms, P is very stable or insoluble, and only a very small proportion exists in the soil solution at any one time. Plant-available P may be considered in either its quantitative or intensive dimension. The quantity of available P is time-specific and crop-specific, because it is the amount of P that will come into the soil solution and be taken up by the crop during its life cycle. The intensity of available P (availability) is most easily identified with its concentration in the soil solution. The soil property controlling the relationship between the solid phase P and its concentration in solution is known as the buffering capacity. The solid phase P involved in this relationship is only a small proportion of the total P, and is known as labile P. It is usually measured by isotopic exchange, but this exchangeable P component does not include the sparingly soluble compounds that also replenish the soil solution as its concentration is depleted by plant uptake. The buffering capacity is the ability of the soil solution to resist a change in its P concentration as P is removed by plant uptake or added in fertilisers or organic materials. Buffering capacity is synonymous with sorptivity, which is a preferable term in the context of the reactivity of P fertiliser with soil. It is usually measured from an adsorption isotherm. By fitting a suitable equation, such as the Langmuir, the total sorption capacity as well as the sorption strength can be determined. Both parameters are important in understanding P availability in soils. Buffering capacity has a major effect on the uptake of labile P because it is inversely related to the ease of desorption of solid phase P and its diffusion. Available P therefore is a direct function of the quantity of labile P and an inverse function of buffering capacity. This has been demonstrated in plant uptake studies. Similarly, the most effective methods of measuring available P (soil tests) are those which remove a proportion of labile P that is inversely related to buffer capacity. Soil tests which measure the concentration of P in solution actually measure availability rather than available P, and their efficacy on a range of soils will depend on the uniformity of the soils" buffer capacities. The most effective soil test usually consists of an anionic extractant. Acidic lactate or fluoride have been found most effective in New South Wales, on a wide range of soils, except calcareous soils which neutralise the acidic component (usually hydrochloric or acetic acid) of the extractant. Sodium bicarbonate (pH 8 · 5) has been found effective on calcareous soils and is widely used throughout the world. It has proved unreliable on NSW soils, and may need more thorough evaluation on non-calcareous soils in other parts of Australia.


2019 ◽  
Vol 11 (10) ◽  
pp. 1393-1399 ◽  
Author(s):  
Fahimeh Rasolzadeh ◽  
Payman Hashemi ◽  
Fariba Nazari Serenjeh ◽  
Sara Maleki

A new cold column trapping-headspace microsolid-phase extraction (CCT-HS-μSPE) system was developed and used for the preconcentration and GC-MS determination of three pesticides (diazinon, malathion and permethrin) in soil samples.


2018 ◽  
Vol 42 (1) ◽  
pp. 7-20 ◽  
Author(s):  
Henrique José Guimarães Moreira Maluf ◽  
Carlos Alberto Silva ◽  
Nilton Curi ◽  
Lloyd Darrell Norton ◽  
Sara Dantas Rosa

ABSTRACT Humic acid (HA) may reduce adsorption and increase soil P availability, however, the magnitude of this effect is different when Ca2+ prevails over Mg2+ in limed soils. The objective of this study was to evaluate the effects of HA rates and carbonate sources on the adsorption, phosphate maximum buffering capacity (PMBC), and P availability in two contrasting soils. Oxisol and Entisol samples were firstly incubated with the following HA rates: 0, 20, 50, 100, 200 and 400 mg kg-1, combined with CaCO3 or MgCO3, to evaluate P adsorption. In sequence, soil samples were newly incubated with P (400 mg kg-1) to evaluate P availability. The least P adsorption was found when 296 mg kg-1 of HA was added to Oxisol. Applying HA rates decreased maximum adsorption capacity, increased P binding energy to soil colloids and did not alter PMBC of Entisol. Available P contents in Oxisol increased with HA rates, but it did not change in Entisol. Choosing the right HA rate can decrease PMBC up to 40% and increase the Oxisol P availability by 17%. Application of MgCO3 instead of CaCO3 decreased P adsorption in both soils. Thus, a positive correlation between Ca2+ content and PMBC was verified. Optimum rate of HA and the preponderance of Mg2+ instead of Ca2+ in soil volume fertilized with P are effective practices to reduce adsorption and increase P availability, especially in clayey Oxisol.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105459
Author(s):  
Liuming Yang ◽  
Zhijie Yang ◽  
Xiaojian Zhong ◽  
Chao Xu ◽  
Yanyu Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document