scholarly journals Sunnhemp and millet as green manure for tropical maize production

2006 ◽  
Vol 63 (5) ◽  
pp. 453-459 ◽  
Author(s):  
Adriano Perin ◽  
Ricardo Henrique Silva Santos ◽  
Segundo Sacramento Urquiaga ◽  
Paulo Roberto Cecon ◽  
José Guilherme Marinho Guerra ◽  
...  

Commonly N release from legume residues is rapid in the tropics. Legume mixtures with grasses can result in slower nutrient release from residues, better matching the N requirements of the following crop. The objectives of this study were to evaluate the effects of the green manures sunnhemp (Crotalaria juncea) and millet (Pennisetum glaucum), alone or mixed, on the performance of a subsequent maize crop with and without the application of N-fertilizer. The experiment consisted of four randomized blocks, with split plots. The plot treatments consisted of previous cultivation of sunnhemp, millet, mixed sunnhemp+millet and weeds. The subplot treatments were 90 kg N ha-1 and absence of N-fertilizer. Substantial amounts of biological nitrogen fixation (BNF) nitrogen were present in above ground parts of sunnhemp alone (173 kg ha-1) and mixed with millet (89 kg ha-1). Decay rates showed that half of the N was released 15 and 22 days from sunnhemp and sunnhemp+millet residues, respectively. The difference was attributed to temporary immobilization due to the higher C/N ratio of sunnhemp+millet. The preceding sunnhemp+millet treatment resulted in a larger maize yield than sunnhemp alone, when no N-fertilizer was applied. This effect was not observed when N-fertilizer was added. This effect may be due to a more timely N release, compared to sunnhemp and millet alone, when available N is required for maize. Nitrogen budgets showed that 15% and 10% in maize grain N was recovered from BNF for sunnhemp alone and sunnhemp+millet respectively. The recovery of N-BNF by maize was 65% higher after sunnhemp+millet than after sunnhemp monocrop.

Author(s):  
Amanda Cecato Favorito ◽  
Edleusa Pereira Seidel ◽  
Taís Regina Kohler ◽  
William Ribeiro de Carvalho ◽  
Renan Pan ◽  
...  

The objective of the present study was to verify the effect of two doses of the biofertilizer ‘Supermagro’ applied in cover, in the presence and absence of cured bovine urine in the maize crop, and in the soil penetration resistance, as well as the effect in the application of biofertilizer ‘Fert Bokashi’. The experimental design used was of randomized blocks with four replicates. The treatments constituted of cover application of ‘Supermagro’ in the dose of 6% (recommended dose) (T1); cover application of ‘Supermagro’ in the dose of 12% (T2); cover application of ‘Supermagro’ in the dose of 6% + cured bovine urine 3% (T3); cover application of ‘Supermagro’ in the dose of 12% + cured bovine urine 3% (T4); cover application of cured bovine urine 3% (T5); use of the biofertilizer ‘Fert Bokashi’ in the dose of 0,5% of dilution) (T6); and control (T7). The results obtained were tabulated and submitted to analysis of variance and the comparison of means by the Dunnett test at 5% of probability, with the aid of the statistical analysis software SAS. For the parameters: thousand grain mass, the treatment ‘Fert Bokashi’ alone presented the highest thousand grain mass (375,00 g) being it superior to the control (p<0,05) with 360,94 g. For the yield parameter, the treatments ‘Supermagro’ 12% + urine, bovine urine alone and ‘Fert Bokashi’ presented the highest averages, (5961 kg ha-1, 5512 kg ha-1 and 5808 kg ha-1, respectively) which differed statistically from the control (5500 kg ha-1) (p<0,05). The biofertilizers are an alternative to increase the yield of maize in the organic system with an average increase of 20% in the maize production in relation to the area without application. The biofertilizer ‘Fer Bokashi’ is an alternative to increase maize yield in the organic production system. The application of biofertilizers did not influence in the soil penetration resistance.


2020 ◽  
Vol 4 ◽  
Author(s):  
Carlos A. C. Crusciol ◽  
Gustavo P. Mateus ◽  
Letusa Momesso ◽  
Cristiano M. Pariz ◽  
André M. Castilhos ◽  
...  

Intercropping grain with forage crops bridges the gap between agriculture and sustainability. In tropical regions, forage grasses are increasingly being adopted as winter pasture intercropped and in rotation with maize to maximize food production. However, current recommendations for nitrogen (N) fertilizer application are based on monocropped maize (Zea mays), and the best N management approach for intercropping systems remains unclear. A field experiment was carried out in three growing seasons with three intercropping systems [monoculture maize, intercropped with palisadegrass (Urochloa brizantha), and intercropped with guineagrass (Megathyrus maximus)] combined with six different split applications of N to maize (0–0, 100–0, 70–30, 50–50, 30–70, and 0–100 kg N ha−1 at seeding-sidedressing) with four replicates. We measured dry matter (DM) and accumulated N in maize and forage grasses, as well as maize production components and yields. Additionally, land equivalent ratio, relative crowding coefficient, aggressivity of maize with forage grasses, forage crude protein (CP) concentration, estimated animal stocking rate, and estimated meat production and economic outcomes. Greatest maize yield was 8.7 Mg ha−1 for monocropped maize. However, favorable maize yield was also obtained in intercropping systems. Although no difference was observed between intercropping systems, applying all N at sidedressing of maize negatively affected maize and forage yields and, consequently, land use and economic evaluation. For both intercropping systems, estimated meat and land use were 114 and 10% higher when N fertilizer was applied than the control (0–0 kg N ha−1), on average. Maize-forage grass intercropping is a viable alternative production system for improving yields and land use. In addition, estimated meat production and revenue can be enhanced with palisadegrass or guineagrass. At least half of the N fertilizer must be applied early in the growing season of maize to maximize production of the entire system.


2018 ◽  
Author(s):  
DEWA OKA SUPARWATA ◽  
Nurmi ◽  
Moh. Ikbal Bahua

This study aimed to determine the effect of vertical mulching to minimize of runoff and soil erosion, vertical mulching influence on the growth and yield of maize, and the correlation between erosion and runoff to maize yield in vertical mulching. This study was conducted in March and July 2012 in the village of Bulontala, District of South Suwawa, Bolango Bone regency, Gorontalo province with slope +15%. This study uses a randomized block design (with three treatment levels: (a) P0 control, (b) P1 (vertical mulching with length 1 m, width 0.5 m and the 0.4 m), and (c) P2 (vertical mulch with 1 m long, 0.5 m wide and 0.5 m in). Each treatment was repeated 3 times in order to obtain experimental plots 9 unit. Observation parameters include surface runoff, erosion, plant growth and the production of maize. Data was analyzed using analysis of variance with the help of SAS data processing program. P1 treatment because runoff and soil erosion are markedly lower (surface flow of 108.19 m3 ha-1 and the erosion of 683.0 kg ha-1). P1 treatment significantly affected the growth of stem diameter (2.21 cm) and increased production of dry shelled maize crop (3.28 ton ha-1). Surface flow is positively correlated with erosion and runoff and erosion negatively correlated with maize production.


2020 ◽  
Vol 35 (2) ◽  
pp. 243-253
Author(s):  
Jorge Luiz Moretti de Souza ◽  
Cibelle Tamiris de Oliveira ◽  
Stefanie Lais Kreutz Rosa ◽  
Rodrigo Yoiti Tsukahara

Abstract Crop productivity evaluation with models simulations can help in the prediction of harvests and in the understanding of the interactions resulting from the soil-plant-atmosphere continuum. The aim of this study was to calibrate and validate the AquaCrop model for maize crop in the edaphoclimatic conditions of Campos Gerais region, Paraná State, Brazil. The analyses were carried out for maize crop with model input data (climate, crop, soil and soil management) obtained from the ABC Foundation Experimental Station in Castro, Ponta Grossa and Socavão. The climate in the region is humid subtropical, with rainfall evenly distributed. The relief varies from flat to gently undulating. The period analyzed in the calibration and validation process comprised 2011 to 2016 and 2012 to 2016 harvests, respectively. The data used in the calibration of AquaCrop was different from those used in the validation process. Observed and simulated yields were evaluated by simple linear regression analyses, absolute and relative errors, correlation coefficient (r), concordance (d) and performance (c) indexes. The calibration of AquaCrop was satisfactory in the locations studied for maize crop, obtaining absolute errors varying from 6 to 121 kg ha–1. The highest calibration errors occurred in Castro. However, the errors were not enough to reduce the performance in the validation process for this localitie. The model validation resulted in “excellent” performance in all locations evaluated. The AquaCrop can be used to predict the maize yield with acceptable accuracy in the Campos Gerais Region, Paraná State, Brazil.


2010 ◽  
Vol 11 ◽  
pp. 59-69 ◽  
Author(s):  
Janak Lal Nayava ◽  
Dil Bahadur Gurung

The relation between climate and maize production in Nepal was studied for the period 1970/71-2007/08. Due to the topographical differences within north-south span of the country, Nepal has wide variety of climatic condition. About 70 to 90% of the rainfall occurs during summer monsoon (June to September) and the rest of the months are almost dry. Maize is cultivated from March to May depending on the rainfall distribution. Due to the availability of improved seeds, the maize yield has been steadily increasing after 1987/1988. The national area and yield of maize is estimated to be 870,166ha and 2159kg/ha respectively in 2007/08. The present rate of annual increase of temperature is 0.04°C in Nepal. Trends of temperature rise are not uniform throughout Nepal. An increase of annual temperature at Rampur during 1968-2008 was only 0.039°C. However, at Rampur during the maize growing seasons, March/April - May, the trend of annual maximum temperature had not been changed, but during the month of June and July, the trend of increase of maximum temperature was 0.03°C to 0.04°C /year.Key words: Climate-change; Global-warming; Hill; Mountain; Nepal; TaraiThe Journal of AGRICULTURE AND ENVIRONMENT Vol. 11, 2010Page: 59-69Uploaded Date: 15 September, 2010


2021 ◽  
Vol 24 (1) ◽  
pp. 77-87
Author(s):  
SS Keya ◽  
MG Miah ◽  
MA Rahman ◽  
MT Islam

Excess use of agrochemicals for intensive cultivation affects crop quality and destroys agro-ecosystems, and eventually creates health hazards. The study aims to investigate the effect of Gliricidia sepium (GS) tree leaf as suitable green manures for supplementing nutrient supply along with nitrogen (N) fertilizer to produce quality tomato and soil fertility improvement. A field experiment was conducted at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh, from November 2016 to March 2017. The experiment was laid out in a randomized complete block design (two factors) with three replications. There were nine treatment combinations with three levels of GS tree leaves (5, 10 and 15 t ha−1) and three doses of N (0, 50 and 100% of the recommended dose of fertilizer). The highest tomato yield was recorded in GS15×N100 treatment combination, which was 41.68% higher compared to the control treatment. Decreasing C: N ratio in increasing dose of GS and N treated plot indicated the quality of tree leaves that ensures faster decomposition and high nutrient release pattern of this species. Increasing rate of soil pH and cation exchange capacity (CEC) in different treatments as compared to initial soil showed soil fertility improvement. Overall, the results indicated that quality tomato could be grown successfully by the application of G. sepium tree leaves along with an appropriate amount of N fertilizer. Ann. Bangladesh Agric. (2020) 24(1) : 77-87


2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


2018 ◽  
Vol 43 (3) ◽  
pp. 243-260
Author(s):  
Nurudeen Abdul Rahman ◽  
Asamoah Larbi ◽  
Andrews Opoku ◽  
Francis Marthy Tetteh ◽  
Irmgard Hoeschle-Zeledon

2013 ◽  
Vol 148 ◽  
pp. 78-85 ◽  
Author(s):  
Noura Ziadi ◽  
Athyna N. Cambouris ◽  
Judith Nyiraneza ◽  
Michel C. Nolin

2019 ◽  
Vol 18 (1) ◽  
pp. 123-132
Author(s):  
CRIZ RENÊ ZANOVELLO ◽  
FABIANO PACENTCHUK ◽  
JAQUELINE HUZAR-NOVAKOWISKI ◽  
GUILHERME ZAMBONIN ◽  
ANTHONY HASEGAWA SANDINI ◽  
...  

RESUMO – O milho é uma planta monoica, e a geração de novos híbridos exige a remoção do pendão das plantas.Sabe-se que a remoção do pendão possui efeito negativo na produtividade da cultura. Contudo, a aplicação de Ncomplementar, via foliar, poderia minimizar essas perdas. Assim, o objetivo deste estudo foi avaliar como o Ncomplementar afeta a produtividade e os componentes de rendimento da cultura do milho submetida ao despendoamento.O estudo foi conduzido em delineamento de blocos casualizados em esquema fatorial 2 x 3 x 5, sendo duas safras(2014/15 e 2015/16), três momentos de despendoamento (sem despondoamento, arranquio de 2-3 folhas e arranquiode 4-5 folhas antes do pendoamento) e cinco doses de N complementar (0, 5, 10, 15, 20 L ha-1) aplicadas no estádio depré-pendoamento (VT). Não foi verificada interação N complementar X despendoamento para nenhuma das variáveisestudadas. A menor produtividade foi verificada no despendoamento de 4-5 folhas. A aplicação de N complementaraumentou a produtividade da cultura do milho, e a aplicação de 11,5 L ha-1 incrementou a produtividade em 448 kgha-1. O despendoamento diminuiu a produtividade da cultura do milho, quanto mais precoce o despendoamento, maisnegativo é o efeito na produtividade.Palavras-chave: Melhoramento genético, N complementar, pendoamento, produção de sementes, Zea mays.FOLIAR APPLICATION OF COMPLEMENTARY NITROGEN,IN MAIZE SUBJECTED TO DETASSELINGABSTRACT – Maize is a monoic plant and the generation of new hybrids requires the removal of the tassel from theplants, which has a negative effect on crop yield. However, the use of complementary leaf nitrogen (N) fertilization,could minimize the yield losses. Therefore, the objective of this study was to evaluate the effect os the application ofcomplementary N affects on yield of the maize crop subjected to detasseling. The study was carried out in a randomizedcomplete block design, with a 2 x 3 x 5 factorial scheme and four replications. Two growing seasons (2014/15 and2015/16), three detasseling moments (without detasseling, detasseling of 2-3 leaves, and detasseling of 4-5 leaves)and five doses of complementary N (0, 5, 10, 15, 20 L ha-1) applied at the VT stage. There was no interaction betweencomplementary N and detasseling for any of the variables studied. The lowest yield was verified with the detasselingof 4-5 leaves. The application of complementary N showed a positive effect on maize yield, and the application of 11.5L ha-1 of complementary N provided yield increase of 448 kg ha-1. The detasseling technique had negative effects onmaize crop yield, the earlier is the detasseling, the more negative is the effect on yield.Keywords: Genetic improvement, Seed production, tasseling, Zea mays.


Sign in / Sign up

Export Citation Format

Share Document