scholarly journals Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process

2005 ◽  
Vol 48 (3) ◽  
pp. 397-401 ◽  
Author(s):  
Danilo Gomes Moriel ◽  
Miriam Blumel Chociai ◽  
Iara Maria Pereira Machado ◽  
José Domingos Fontana ◽  
Tania Maria Bordin Bonfim

The effect of feeding methods on the production of astaxanthin by the yeast Phaffia rhodozyma ATCC 24202 was studied, using continuous and pulsed fed-batch processes and low cost materials as substrates (sugar cane juice and urea). In continuous fed-batch processes, a cellular astaxanthin concentration of 383.73 µg/g biomass was obtained. But in pulsed fed-batch processes a reduction in the cellular astaxanthin concentration (303.34 µg/g biomass) was observed. Thus the continuous fed-batch processes could be an alternative to industrial production of astaxanthin, allowing an increase in the biomass productivity without losses on astaxanthin production by the yeast.

2020 ◽  
Vol 10 (3) ◽  
pp. 5348-5354

This work aim the carotenoid bioproduction by the yeast Phaffia rhodozyma Y-17268 in a fed-batch bioreactor with different low-cost agroindustrial substrates (crude glycerol, corn steep liquor, and rice parboiling water). The maximum concentration of total carotenoid and cell productivity were 4118 µg/L (835 µg/g) and 0.05 g/L. h, respectively, with a feed volume of 75 mL every 12 h. The medium were composed of 100 g/L crude glycerol, 100 g/L corn steep liquor, and 20 g/L rice parboiling water at 25ºC, pHinitial 4.0, agitation rate of 250 rpm, aeration rate of 1.5 vvm and 96 h of bioproduction. 0.188 h-1 of maximum specific growth speeds (μmax) was obtained for the major carotenoid - (all-E)-β-carotene (75.9%). Thus, the yeast P. rhodozyma produced in a fed-batch bioreactor demonstrated a great potential to produce the β-carotene.


1998 ◽  
Vol 19 (3) ◽  
pp. 161-164 ◽  
Author(s):  
J. A. Florêncio ◽  
C. R. Soccol ◽  
L. F. Furlanetto ◽  
T. M. B. Bonfim ◽  
N. Krieger ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 2127
Author(s):  
Penka Petrova ◽  
Alexander Arsov ◽  
Ivan Ivanov ◽  
Lidia Tsigoriyna ◽  
Kaloyan Petrov

Bacillus licheniformis is a soil bacterium with many industrial applications. In addition to enzymes, platform chemicals, antibiotics and phytohormones, the species produces exopolysaccharides (EPSs) of various biological activities. This study revealed that Bulgarian isolate B. licheniformis 24 produced EPSs consisting of galactose, glucose and mannose with substrate-dependent ratio. From glucose, B. licheniformis 24 secreted EPS1, consisting of 54% galactose, 39% glucose and 7% mannose. From fructose, the strain formed EPS2, containing 51% glucose, 30% mannose and 19% galactose. Batch cultivation in flasks yielded 2.2–2.6 g/L EPS1 and 1.90–2.11 g/L EPS2. Four to five times higher yields of EPS were obtained from both substrates during batch and fed-batch processes in a fermenter at 37.8 °C, pH 6.2 and aeration 3.68 vvm. The batch process with 200 g/L of starting substrates received 9.64 g/L EPS1 and 6.29 g/L EPS2, reaching maximum values at the 33rd and 24th h, respectively. Fed-batch fermentation resulted in the highest yields, 12.61 g/L EPS1 and 7.03 g/L EPS2. In all processes, EPSs were produced only in the exponential growth phase. Both EPSs exhibited antioxidant activity, but EPS2 was much more potent in this regard, reaching 811 μM Vitamin C Equivalent Antioxidant Capacity (versus 135 μM for EPS1). EPS1 displayed antibacterial activity against a non-O1 strain of Vibrio cholerae.


2020 ◽  
Vol 16 (6) ◽  
pp. 928-933
Author(s):  
Jujjavarapu S. Eswari

Objective: Biosurfactants are the surface active agents which are used for the reduction of surface and interfacial tensions of liquids. Rhamnolipids are the surfactants produced by Pseudomonas aeruginosa. It requires minimum nutrition for its growth as it can also grow in distilled water. The rhamnolipids produced by Pseudomonas aeruginosa are extra-cellular glycolipids consisting of L-rhamnose and 3-hydroxyalkanoic acid. Methods: The fed-batch method for the rhamnolipid production is considered in this study to know the influence of the carbon, nitrogen, phosphorous substrates as growth-limiting nutrients. Pulse feeding is employed for limiting nutrient addition at particular time interval to obtain maximum rhamnolipid formation from Pseudomonas aeruginosa compared with the batch process. Results: Out of 3 fed batch strategies constant glucose fed batch strategy shows best and gave maximum rhamnolipid concentration of 0.134 g/l.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 62
Author(s):  
Konstantins Dubencovs ◽  
Janis Liepins ◽  
Arturs Suleiko ◽  
Anastasija Suleiko ◽  
Reinis Vangravs ◽  
...  

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1074
Author(s):  
Federico Zuecco ◽  
Matteo Cicciotti ◽  
Pierantonio Facco ◽  
Fabrizio Bezzo ◽  
Massimiliano Barolo

Troubleshooting batch processes at a plant-wide level requires first finding the unit causing the fault, and then understanding why the fault occurs in that unit. Whereas in the literature case studies discussing the latter issue abound, little attention has been given so far to the former, which is complex for several reasons: the processing units are often operated in a non-sequential way, with unusual series-parallel arrangements; holding vessels may be required to compensate for lack of production capacity, and reacting phenomena can occur in these vessels; and the evidence of batch abnormality may be available only from the end unit and at the end of the production cycle. We propose a structured methodology to assist the troubleshooting of plant-wide batch processes in data-rich environments where multivariate statistical techniques can be exploited. Namely, we first analyze the last unit wherein the fault manifests itself, and we then step back across the units through the process flow diagram (according to the manufacturing recipe) until the fault cannot be detected by the available field sensors any more. That enables us to isolate the unit wherefrom the fault originates. Interrogation of multivariate statistical models for that unit coupled to engineering judgement allow identifying the most likely root cause of the fault. We apply the proposed methodology to troubleshoot a complex industrial batch process that manufactures a specialty chemical, where productivity was originally limited by unexplained variability of the final product quality. Correction of the fault allowed for a significant increase in productivity.


2019 ◽  
Vol 15 (2) ◽  
pp. 1900088 ◽  
Author(s):  
Tobias Habicher ◽  
Edward K. A. Rauls ◽  
Franziska Egidi ◽  
Timm Keil ◽  
Tobias Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document