scholarly journals Backstepping Methodology to Troubleshoot Plant-Wide Batch Processes in Data-Rich Industrial Environments

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1074
Author(s):  
Federico Zuecco ◽  
Matteo Cicciotti ◽  
Pierantonio Facco ◽  
Fabrizio Bezzo ◽  
Massimiliano Barolo

Troubleshooting batch processes at a plant-wide level requires first finding the unit causing the fault, and then understanding why the fault occurs in that unit. Whereas in the literature case studies discussing the latter issue abound, little attention has been given so far to the former, which is complex for several reasons: the processing units are often operated in a non-sequential way, with unusual series-parallel arrangements; holding vessels may be required to compensate for lack of production capacity, and reacting phenomena can occur in these vessels; and the evidence of batch abnormality may be available only from the end unit and at the end of the production cycle. We propose a structured methodology to assist the troubleshooting of plant-wide batch processes in data-rich environments where multivariate statistical techniques can be exploited. Namely, we first analyze the last unit wherein the fault manifests itself, and we then step back across the units through the process flow diagram (according to the manufacturing recipe) until the fault cannot be detected by the available field sensors any more. That enables us to isolate the unit wherefrom the fault originates. Interrogation of multivariate statistical models for that unit coupled to engineering judgement allow identifying the most likely root cause of the fault. We apply the proposed methodology to troubleshoot a complex industrial batch process that manufactures a specialty chemical, where productivity was originally limited by unexplained variability of the final product quality. Correction of the fault allowed for a significant increase in productivity.

Author(s):  
Hyun-Woo Cho ◽  
Kwang-Jae Kim

To ensure safety of a batch process and quality of its final product, one needs to quickly identify an assignable cause of a fault. To solve the diagnosis problem of a batch process, Cho and Kim6 proposed a new statistical diagnosis method based on Fisher discriminant analysis (FDA). They showed satisfactory diagnosis performance on industrial batch processes. However, the diagnosis method of Cho and Kim6 has a major limitation: it does not work when the fault data available for building the discriminant model are insufficient. In this work, we propose a method to handle the insufficiency of the fault data in diagnosing batch processes. The diagnosis performance of the proposed method is demonstrated using a data set from a PVC batch process. The proposed method is shown to be able to handle the data insufficiency problem, and yield reliable diagnosis performance.


Author(s):  
PHILIPPE CASTAGLIOLA ◽  
ARIANE FERREIRA PORTO ROSA

In some industrial situations, the classical assumption used in the batch process monitoring that all batches have equal durations and are synchronized does not hold. A batch process is carried out in sequential phases and a significant variability generally occurs in the duration of the phases such that events signifying the beginning or the end of a phase are generally misaligned in time within the various batches. The consequence is that the variable trajectories, in the different runs of the same batch process, are unsynchronized. In this case, data analysis from process for performing the multivariate statistical process control can be difficult. In this paper, we propose several innovative methods for the off-line and on-line monitoring of batch processes with varying durations, all based on the Hausdorff distance. These methods have been successfully tested on a simulated example and on an industrial case example. The conclusion is that these methods are able to efficiently discriminate between nominal and non-nominal batches.


2022 ◽  
Vol 1 ◽  
Author(s):  
Rodrigo Rocha de Oliveira ◽  
Anna de Juan

Synchronization of variable trajectories from batch process data is a delicate operation that can induce artifacts in the definition of multivariate statistical process control (MSPC) models for real-time monitoring of batch processes. The current paper introduces a new synchronization-free approach for online batch MSPC. This approach is based on the use of local MSPC models that cover a normal operating conditions (NOC) trajectory defined from principal component analysis (PCA) modeling of non-synchronized historical batches. The rationale behind is that, although non-synchronized NOC batches are used, an overall NOC trajectory with a consistent evolution pattern can be described, even if batch-to-batch natural delays and differences between process starting and end points exist. Afterwards, the local MSPC models are used to monitor the evolution of new batches and derive the related MSPC chart. During the real-time monitoring of a new batch, this strategy allows testing whether every new observation is following or not the NOC trajectory. For a NOC observation, an additional indication of the batch process progress is provided based on the identification of the local MSPC model that provides the lowest residuals. When an observation deviates from the NOC behavior, contribution plots based on the projection of the observation to the best local MSPC model identified in the last NOC observation are used to diagnose the variables related to the fault. This methodology is illustrated using two real examples of NIR-monitored batch processes: a fluidized bed drying process and a batch distillation of gasoline blends with ethanol.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philipp Noll ◽  
Chantal Treinen ◽  
Sven Müller ◽  
Lars Lilge ◽  
Rudolf Hausmann ◽  
...  

AbstractA key challenge to advance the efficiency of bioprocesses is the uncoupling of biomass from product formation, as biomass represents a by-product that is in most cases difficult to recycle efficiently. Using the example of rhamnolipid biosurfactants, a temperature-sensitive heterologous production system under translation control of a fourU RNA thermometer from Salmonella was established to allow separating phases of preferred growth from product formation. Rhamnolipids as bulk chemicals represent a model system for future processes of industrial biotechnology and are therefore tied to the efficiency requirements in competition with the chemical industry. Experimental data confirms function of the RNA thermometer and suggests a major effect of temperature on specific rhamnolipid production rates with an increase of the average production rate by a factor of 11 between 25 and 38 °C, while the major part of this increase is attributable to the regulatory effect of the RNA thermometer rather than an unspecific overall increase in bacterial metabolism. The production capacity of the developed temperature sensitive-system was evaluated in a simple batch process driven by a temperature switch. Product formation was evaluated by efficiency parameters and yields, confirming increased product formation rates and product-per-biomass yields compared to a high titer heterologous rhamnolipid production process from literature.


Author(s):  
A. Al Bassam ◽  
Y. M. Al Said

This paper summarizes the experiences with the first gas turbine inlet air cooling project in Saudi Arabia. It will cover the feasibility study, cooling system options, overview, system equipment description, process flow diagram, construction, commissioning, start-up and performance of the project which is currently under commissioning and initial start up at Qassim Central Power Plant (QCPP) owned by Saudi Electric Company (S.E.C.) Central Region Branch.


Author(s):  
Т.В. ПЕЛИПЕНКО

Исследованы потенциальные возможности ресурсосберегающей технологии переработки шалфея лекарственного (ШЛ). Объектом исследования были образцы эфирномасличного сырья – свежеубранные надземные части ШЛ в фазе полного цветения растения и сухие листья ШЛ. Предложенная схема переработки включает следующие стадии: получение эфирного масла; извлечение конкрета из обезэфиренных отходов экстракцией углеводородным растворителем и последующей его отгонкой; получение абсолютного масла и очищенных восков из конкрета отходов; извлечение дитерпеновых соединений экстракцией этиловым спиртом из отходов сырья после обработки гексаном. В результате исследований фракционного состава сырья и особенностей локализации эфирного масла установлено, что массовая доля эфирного масла составляет, % к сухой массе исследуемых фракций: в листьях и соцветиях 2,75, в стеблях 0,31. Рекомендовано введение ограничительных норм по соотношению технически ценной фракции – листьев и соцветий и балластной – стеблей. Полученное из ШЛ эфирное масло имеет высокое содержание туйонов (31,50%), камфоры (21,0%) и 1,8-цинеола (18,80%). Выход дитерпеновых соединений при комплексной переработке эфирномасличного сырья ШЛ на 38,0% ниже, чем из сухих листьев растения. Однако при расчете на сухую массу листьев и соцветий, составляющих 62,3% от массы сырья, показатели отличаются незначительно. Общий выход продуктов, содержащих комплекс биологически активных веществ, составил 15,53 %, что подтверждает целесообразность использования комплексной переработки шалфея лекарственного. The potential of resource-saving technology for processing medicinal sage (MS) has been studied. Samples of essential oil raw materials-freshly harvested aboveground parts of MS in the phase of full flowering of the plant and dry leaves of MS were the object of research. The proposed process flow diagram includes the following stages: obtaining essential oil; recovering a particular from deester waste by extraction with a hydrocarbon solvent and its subsequent distillation; obtaining absolute oil and refined waxes from a specific waste; extraction of diterpene compounds from raw waste after treatment with hexane by extraction with ethyl alcohol. As a result of studies of the fractional composition of raw materials and the features of localization of essential oil, it was found that the mass fraction of essential oil is, % of the dry mass of the studied fractions: 2,75 in leaves and inflorescences, and 0,31 in stems. The introduction of restrictive norms on the ratio of technically valuable fraction – leaves and inflorescences and ballast – stems is recommended. The essential oil obtained from MS has a high content of tuyons (31,50%), camphor (21,0%) and 1,8-cineol (18,80%). The yield of diterpene compounds in the complex processing of essential oil raw materials MS is 38,0% lower than from dry leaves of the plant. However when calculating the dry mass of leaves and inflorescences, which make up 62,3% of the mass of raw materials, the indicators differ slightly. The total yield products containing a complex of biologically active substances amounted to 15,53%, which confirms the feasibility of complex processing of medicinal sage.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 446 ◽  
Author(s):  
Lidia Gerasimova ◽  
Anatoly Nikolaev ◽  
Marina Maslova ◽  
Ekaterina Shchukina ◽  
Gleb Samburov ◽  
...  

Geological setting and mineral composition of (apatite)-nepheline-titanite ore from the Khibiny massif enable selective mining of titanite ore, and its processing with sulfuric-acid method, without preliminary concentration in flotation cells. In this process flow diagram, titanite losses are reduced by an order of magnitude in comparison with a conventional flotation technology. Further, dissolution of titanite in concentrated sulfuric acid produces titanyl sulfate, which, in turn, is a precursor for titanosilicate synthesis. In particular, synthetic analogues of the ivanyukite group minerals, SIV, was synthesized with hydrothermal method from the composition based on titanyl-sulfate, and assayed as a selective cation-exchanger for Cs and Sr.


Sign in / Sign up

Export Citation Format

Share Document