scholarly journals Inclusion of copaiba oil (Copaifera sp.) as additive in supplements for cattle on pasture

2018 ◽  
Vol 19 (2) ◽  
pp. 178-192
Author(s):  
Fabiola Espindola Ortega de Lima ◽  
Rafael Henrique de Tonissi e Buschinelli de Goes ◽  
Jefferson Rodrigues Gandra ◽  
Diego dos Santos Penha ◽  
Raquel Tenório de Oliveira ◽  
...  

SUMMARY This study analyzed the effect of including copaiba oil as an additive for cattle supplemented on pasture, during the dry season. Four crossbred steers, castrated, with 245 ± 25 kg, aged about 18 months, fitted with permanent rumen cannula; were randomly assigned to a 4×4 Latin square. All animals were housed in individual paddocks (0.3 ha), uniformly covered with Brachiaria brizantha cv Marandu, with through and drinking fountain; and were given a concentrate at 500g/100 kg BW containing 380 g/kg crude protein (%DM). The copaiba oil was added to the supplement as a spray, in the proportions of 0, 0.5; 1.0 and 1.5 g/kg DM intake. Spraying supplementation was performed daily at the time of supply of the supplement. Data of intake and digestibility of nutrients, ruminal pH; ruminal ammonia nitrogen, and microbial protein synthesis were tested by analysis of variance and polynomial regression, adopting a significance level of 5%. The inclusion of copaiba oil quadratically affected total dry matter intake (P=0.030) and CP digestibility (P=0.043), without altering ruminal metabolism (P>0.05) and microbial protein synthesis (P>0.05) of the animals kept on pasture.

2017 ◽  
Vol 9 (7) ◽  
pp. 164 ◽  
Author(s):  
Renato Tonhá Alves Júnior ◽  
Evaristo Jorge Oliveira de Souza ◽  
Airon Aparecido Silva de Melo ◽  
Dulciene Karla De Andrade Silva ◽  
Thaysa Rodrigues Torres ◽  
...  

Four concentrations (0, 200, 400, 600 and 800 mg extract per ml of water) of mesquite extract were used as phytogenic additive to verify the potential to increase the nutritional value of the feed, ruminal parameters (primarily propionate production) and nitrogen use efficiency, microbial protein synthesis and quantify the reduction of ciliated protozoa and characterize the ingestive behavior of sheep. Ten adult male sheep were subjected to a 5 × 5 double Latin square design. Prior to feeding, the animals received the mesquite extract. Nutrient intake was estimated from the difference of the amount of feed provided and the total surplus. Rumen content samples were collected to evaluate the profile of short-chain fatty acids, ammonia nitrogen, pH, ciliated protozoa, turnover rate and disappearance rate. To estimate the microbial protein synthesis, the technique of purine derivatives was used. The mesquite extract quadratically increased (P < 0.05) the digestibility of dry matter, organic matter, crude protein and total digestible nutrients, as well as increased propionate production, acetate:propionate ratio and microbial protein synthesis. The numbers of ciliate protozoa in the rumen decreased as a result of mesquite extract inclusion in the diet. The use of mesquite pod extract at a concentration of 488 mg/mL is recommended to improve digestibility of dry matter, organic matter, crude protein and total digestible nutrients, and to optimize microbial protein synthesis and increase propionic acid production.


2016 ◽  
Vol 41 (3) ◽  
pp. 135-144 ◽  
Author(s):  
J. Achmadi ◽  
A. T. Suhada ◽  
L. K. Nuswantara ◽  
F. Wahyono

The experimental research was conducted to clarify the effect of synchronization of ruminal carbohydrate and protein releases from sugarcane bagasse based diet (SBBD) on microbial protein synthesis in sheep. The first experiment was the formulation of three SBBD with similar nutrient content but differed in synchronization indexes (namely 0.36; 0.50 and 0.63). The in sacco nutrient degradability coefficient was used to calculate the synchronization index of each feedstuff. The second experiment was determination of post feeding ruminal pH, ruminal concentrations of total volatile fatty acids (TVFA) and ammonia nitrogen (NH3-N), and blood urea nitrogen (BUN) level in sheep fed on experimental SBBD. The third experiment was determination of feed digestibility and estimation of microbial nitrogen synthesis (MNP) on the basis of excreted urinary allantoin. The alteration of dietary synchronization index did not change nutrient intake, but the digestibilities of DM, OM and CP were increased (P<0.05). The post feeding ruminal pH was decreased (P<0.05) but concentrations of post feeding ruminal TVFA and NH3-N, and level of BUN were increased (P<0.05) by the treatment of dietary synchronization index. The treatment of dietary synchronization index improved MNP (P<0.05), although dietary synchronization index at 0.63 lowered the MNP (P<0.05). 


2021 ◽  
Vol 66 (No. 9) ◽  
pp. 349-358
Author(s):  
Cassiano Albino Lorensetti ◽  
Magali Floriano da Silveira ◽  
Roberta Farenzena ◽  
Eduardo Felipe Colerauz de Oliveira Lazzarotto ◽  
Jeferson Menezes Lourenço ◽  
...  

The intercrop between grasses and legumes is an alternative to maintain and increase animal production. The study was conducted to evaluate the effect of grass-legume mixtures with or without supplementations on rumen fermentation, nutrient intake, and microbial protein synthesis. Six Holstein steers fitted with ruminal cannula were kept in a double 3 × 3 Latin square design. The treatments were: 1) oat, annual ryegrass, and supplement (GS), 2) oat, annual ryegrass, and vetch (GL), 3) oat, annual ryegrass, vetch, and supplement (GLS). Supplementation of ground maize was given daily at 11 h at 1% of body weight. Total digestible nutrient intake was higher in steers fed GS and GLS. Animals on GL ingested higher concentrations of nitrogen (N) compared to animals on GS and GLS diets. Ruminal pH and ammonia concentration were higher in GL. Grass-legume mixtures and supplements showed higher concentrations of sugar, α-amino acids, and peptides. The ruminal fermentative parameters, ruminal pH, ammonia, and sugars ranged cubically across the day. Microbial protein synthesis was similar amongst the treatments. Animals exclusively consuming temperate grass produce higher ruminal pH and ammonia concentrations. Therefore, using temperate legumes in pasture systems can be included in the cattle diet in lieu of utilizing energy supplements.


2015 ◽  
Vol 15 (2) ◽  
pp. 289-305 ◽  
Author(s):  
Maja Fijałkowska ◽  
Barbara Pysera ◽  
Krzysztof Lipiński ◽  
Danuta Strusińska

Abstract Losses of crude protein during ensiling of herbages, in contrast to carbohydrates, do not affect the reduction of its content; their form is changed into greater solubility non-protein compounds and also highly degraded forms, which lower the efficiency of the microbial protein synthesis in the rumen. These processes are accompanied by a change of amino acid composition of herbage protein and decrease in intestinal digestibility of protein from feeds as a result of the formation of indigestible complexes with carbohydrates (ADIN). Reduction of protein degradation in silages is achieved by accelerated acidity through addition of acids or dominance of homofermentative bacteria. The positive effects of fermentation inhibitors or sorbents use, as well as the wilting of raw material on the level and rate of protein degradation were demonstrated by many researchers. A greater contribution of protein nitrogen and reduction of deamination in silages can also be obtained by using bacteria inoculants. Increasing the proportion of protein nitrogen is accompanied by the improved efficiency of microbial protein synthesis.


2016 ◽  
Vol 154 (6) ◽  
pp. 1102-1109 ◽  
Author(s):  
E. DE JESUS DOS SANTOS ◽  
M. L. ALBUQUERQUE PEREIRA ◽  
M. PEREIRA DE FIGUEIREDO ◽  
H. G. DE OLIVEIRA SILVA ◽  
J. FERREIRA DA CRUZ ◽  
...  

SUMMARYThe experiment, conducted at Bahia, Brazil, from May to August 2010, aimed to evaluate the nitrogen (N) balance, urea excretion and microbial protein synthesis in lactating goats fed pelleted concentrates with the addition of crude protein (CP), obtained by replacing alfalfa hay with soybean meal. The diets consisted of different levels of CP and 200 g of roughage (Tifton 85 hay)/kg. Maize and mesquite bran were used as the energy source, with maize replaced by mesquite bran in the ratio of 1·7:1. Eight female Saanen goats were used, confined in individual pens and allocated to a 4 × 4 Latin square design. The N balance in the body was positive, and loss of body weight (–0·03 g/day) was observed for the diet with 190 g CP/kg. The concentration (mg/dl) of urea in urine, milk and blood plasma was positively influenced in a linear form, and the highest rate of increase was found in urine, with 2 mg/dl for every 10 g CP/kg added to the diet. The microbial protein synthesis was not affected, but the diets reduced the microbial protein (44 g/day) and its ruminal production efficiency (30 g/kg total digestible nutrients). The levels above 190 g of CP are not recommended because of the energy expenditure required to excrete the urea.


1997 ◽  
Vol 64 (3) ◽  
pp. 393-402 ◽  
Author(s):  
V. R. Carruthers ◽  
P. G. Neil ◽  
D. E. Dalley

AbstractThe effect on digestibility, ruminal metabolites, microbial protein synthesis and milk production of manipulating the non-structural (NSC): structural (SO carbohydrate ratio in a predominantly pasture diet was investigated in cows in early (trial 1) and late (trial 2) lactation. Twenty-four cows in trial 1 and 15 cows in trial 2 were offered pasture only (P), 0·85 P plus 0·15 NSC/protein mixture (PR), and P plus an additional 0·1 (trial 1) or 0·15 (trial 2) NSC (PE) in a Latin-square arrangement. All diets were isonitrogenous and P and PR were isoenergetic. PE but not PR increased microbial protein synthesis and decreased ruminal ammonia and milk urea levels, compared with P. Efficiency of microbial synthesis (g N per kg digestible organic matter intake) was not altered by treatment. Treatments had minor effects on ruminal pH and no effect on volatile fatty acid concentrations. PE and PR did not affect milk yield or protein yield and decreased fat yield compared with P in trial 1. Milk yield was increased on PE and PR compared with P and was greater on PE than PR, in trial 2. Yields of fat and protein were higher on PE than on P and yield of protein was higher on PR than on P. The results suggest that increasing the ratio of NSC: protein by increasing total carbohydrate intake was more effective in improving nitrogen utilization in the rumen than was increasing the NSC: SC ratio without increasing carbohydrate intake.


2019 ◽  
Vol 59 (9) ◽  
pp. 1674 ◽  
Author(s):  
Metha Wanapat ◽  
Thiwakorn Ampapon ◽  
Kampanat Phesatcha ◽  
Sungchhang Kang

Replacement of chemical compounds by dietary sources as rumen enhancers have been of great interest and concern by researchers. Four, rumen-fistulated swamp buffalo bulls with average liveweight of 365 ± 15.0 kg were randomly assigned to treatments, to investigate the impact of banana flower powder (BAFLOP) as a rumen modifier on pH, rumen fermentation, nutrient digestibility, microbial protein synthesis and volatile fatty acids. All buffaloes were allotted according to a 4 × 4 Latin square design. Dietary supplementation treatments were as follows: 2 g concentrate/kg bodyweight (BW; T1), 15 g concentrate/kg BW (T2), 15 g concentrate/kg BW plus BAFLOP 300 g/head.day (T3) and 15 g concentrate/kg BW plus BAFLOP 600 g/head.day (T4). Untreated rice straw was fed ad libitum. The findings showed that total feed intake was increased in buffaloes fed a diet supplemented with concentrate at 2 g/kg BW, while rice straw intake was reduced. Nutrient digestibility was increased by BAFLOP supplementation at both levels (T3 and T4; P &lt; 0.05). Ruminal pH dropped (5.9) in buffaloes fed with concentrate at 15 g/kg BW, while buffaloes with BAFLOP supplementation could maintain ruminal pH when fed with high-concentrate diet. Ruminal ammonia-nitrogen increased in the buffaloes fed concentrate at 15 g/kg BW, especially with BAFLOP supplementation. Feeding high-concentrate diet increased the concentrations of ruminal total volatile fatty acids and propionic acid (C3), while the concentration of acetic acid and the acetic acid:C3 ratio and methane production were subsequently reduced (P &lt; 0.05). In addition, efficiency of microbial protein synthesis was increased by the BAFLOP feeding (P &lt; 0.05). In the present study, using BAFLOP as a dietary rumen enhancer at 300–600 g/head.day resulted in an increased rumen pH, C3 concentration, nutrient digestibility and microbial protein synthesis, while mitigating ruminal methane production. Higher nutrient digestibility and lower ruminal methane production, more dietary energy and production efficiency are expected.


2017 ◽  
Vol 57 (8) ◽  
pp. 1702 ◽  
Author(s):  
M. K. Bowen ◽  
D. P. Poppi ◽  
S. R. McLennan

The efficiency of microbial protein synthesis (EMPS) in cattle grazing a range of tropical pasture types was examined using a new method of intra-jugular infusion of chromium–EDTA to estimate urinary excretion of purine derivatives. Seven pasture types were studied in south-eastern Queensland, Australia, over a 13-month period. These included native tropical grass (C4) pasture (major species Heteropogon contortus and Bothriochloa bladhii) studied in the early wet, the wet–dry transition and the dry season; introduced tropical grass (C4) pasture (Bothriochloa insculpta) in the mid-wet season; two introduced tropical legume species (C3; Lablab purpureus and Clitoria ternatea); and the temperate-grass (C3) pasture, ryegrass (Lolium multiflorum). There was a large range in EMPS across pasture types, with a range of 26–209 g microbial crude protein per kilogram digestible organic matter intake (DOMI). Estimated rumen-degradable protein (RDP) supply (42–525 g/kg DOMI) was the major factor associated with EMPS across the range of pasture types studied. EMPS in steers grazing all tropical grass pastures was low (&lt;130 g/kg DOMI) and limited by RDP supply. Negative linear relationships (P &lt; 0.05) between EMPS and concentrations of both neutral detergent fibre and acid detergent fibre in extrusa were evident. However, non-fibre carbohydrate in extrusa, total non-structural carbohydrate concentration in plucked pasture leaf, rumen fluid and particle dilution rate, protozoal concentration in rumen fluid and rumen fluid pH were not correlated with EMPS. It was concluded that EMPS was well below 130 g microbial crude protein per kilogram DOMI when cattle grazed unfertilised, tropical grass pastures in south-eastern Queensland and that RDP was the primary limiting nutrient. High EMPS was associated with a very high RDP, vastly in excess of RDP requirements by microbes.


1975 ◽  
Vol 26 (4) ◽  
pp. 699 ◽  
Author(s):  
DJ Walker ◽  
AR Egan ◽  
CJ Nader ◽  
MJ Ulyatt ◽  
GB Storer

Microbial protein synthesis in the rumen of mature sheep was measured by a technique dependent upon the incorporation of 35S from radioactive sulphate into microbial sulphur amino acids. In two separate experiments, sheep were fed on four dried forages and three fresh forages. Mean values and standard deviations for microbial protein synthesis per mole of volatile fatty acid produced in the rumen were 16.1 ? 3.4 g and 20.4? 2.3 g for dried and fresh forages respectively. Corresponding values for microbial protein synthesized per 100 g of organic matter digested in the rumen were 15.1 ? 3.6 g and 24.6 ? 4.9 g. Turnover constants for microbial protein were 1.06 ? 0.12 day-1 and 1.42 ? 0.10 day-1 when dried and fresh forages respectively were eaten, and it is suggested that efficiency of microbial protein synthesis was dependent on the rate of digesta flow through the rumen. Of the non-ammonia nitrogen (NAN) reaching the duodenum up to 41, 53 and 68% was non-microbial in origin when perennial ryegrass, Tama ryegrass and white clover respectively were eaten fresh-cut. When either subterranean clover hay, lucerne hay, wheaten hay or a mixture of wheaten hay plus wheat straw was eaten, up to 67, 57, 52 and 57% respectively of NAN at the duodenum was non-microbial in origin. In the latter two cases, the total flow of NAN was relatively low but the apparent digestibility of the non-microbial fraction in the intestines was still appreciable.


Sign in / Sign up

Export Citation Format

Share Document