scholarly journals Mesquite Extract as Phytogenic Additive to Improve the Nutrition of Sheep

2017 ◽  
Vol 9 (7) ◽  
pp. 164 ◽  
Author(s):  
Renato Tonhá Alves Júnior ◽  
Evaristo Jorge Oliveira de Souza ◽  
Airon Aparecido Silva de Melo ◽  
Dulciene Karla De Andrade Silva ◽  
Thaysa Rodrigues Torres ◽  
...  

Four concentrations (0, 200, 400, 600 and 800 mg extract per ml of water) of mesquite extract were used as phytogenic additive to verify the potential to increase the nutritional value of the feed, ruminal parameters (primarily propionate production) and nitrogen use efficiency, microbial protein synthesis and quantify the reduction of ciliated protozoa and characterize the ingestive behavior of sheep. Ten adult male sheep were subjected to a 5 × 5 double Latin square design. Prior to feeding, the animals received the mesquite extract. Nutrient intake was estimated from the difference of the amount of feed provided and the total surplus. Rumen content samples were collected to evaluate the profile of short-chain fatty acids, ammonia nitrogen, pH, ciliated protozoa, turnover rate and disappearance rate. To estimate the microbial protein synthesis, the technique of purine derivatives was used. The mesquite extract quadratically increased (P < 0.05) the digestibility of dry matter, organic matter, crude protein and total digestible nutrients, as well as increased propionate production, acetate:propionate ratio and microbial protein synthesis. The numbers of ciliate protozoa in the rumen decreased as a result of mesquite extract inclusion in the diet. The use of mesquite pod extract at a concentration of 488 mg/mL is recommended to improve digestibility of dry matter, organic matter, crude protein and total digestible nutrients, and to optimize microbial protein synthesis and increase propionic acid production.

2018 ◽  
Vol 19 (2) ◽  
pp. 178-192
Author(s):  
Fabiola Espindola Ortega de Lima ◽  
Rafael Henrique de Tonissi e Buschinelli de Goes ◽  
Jefferson Rodrigues Gandra ◽  
Diego dos Santos Penha ◽  
Raquel Tenório de Oliveira ◽  
...  

SUMMARY This study analyzed the effect of including copaiba oil as an additive for cattle supplemented on pasture, during the dry season. Four crossbred steers, castrated, with 245 ± 25 kg, aged about 18 months, fitted with permanent rumen cannula; were randomly assigned to a 4×4 Latin square. All animals were housed in individual paddocks (0.3 ha), uniformly covered with Brachiaria brizantha cv Marandu, with through and drinking fountain; and were given a concentrate at 500g/100 kg BW containing 380 g/kg crude protein (%DM). The copaiba oil was added to the supplement as a spray, in the proportions of 0, 0.5; 1.0 and 1.5 g/kg DM intake. Spraying supplementation was performed daily at the time of supply of the supplement. Data of intake and digestibility of nutrients, ruminal pH; ruminal ammonia nitrogen, and microbial protein synthesis were tested by analysis of variance and polynomial regression, adopting a significance level of 5%. The inclusion of copaiba oil quadratically affected total dry matter intake (P=0.030) and CP digestibility (P=0.043), without altering ruminal metabolism (P>0.05) and microbial protein synthesis (P>0.05) of the animals kept on pasture.


2013 ◽  
Vol 13 (2) ◽  
pp. 59-67 ◽  
Author(s):  
Syapura Syapura ◽  
Muhamad Bata ◽  
Wardhana Surya Pratama

Improving of rice straw quality and its effect on ability nutrient digestibility and rumen metabolism products of buffalo in-vitro with feces as inoculum source ABSTRACT.  This study was aimed to determine the effect of feeding  ammoniated rice straw plus concentrate on buffalo nutrient digestibility and rumen fermentation products by in vitro. The Research was carried out by using  experimental method, designed according to completely  randomized design (CRD). The source of inoculum was obtain from different feces of three  buffalos kept in  Datar Village of Purwokerto region fed  rice straw, rice straw plus concentrate and rice straw ammoniated plus concentrate with dry matter ratio of 80 : 20. The treatments tested consisted of three treatments, namely R0 =  control feed using rice straw; R1 = the use of rice straw plus concentrate with a ratio of  (DM basis) 80:20; R2 = the use of ammoniated rice straw plus concentrate with a ratio of (DM basis) 80:20. The treatments were repeated 7 times, so there were 21 experimental units. The Variables measured included total VFA, Ratio A/P, N-NH3, Microbial Protein Synthesis (MPS),   Dry Matter and Organic Matter Digestibility. The result of this study showed that the treatment had an effect significant (P0.05) on the concentration of VFA, Ratio A/P,  N-NH3,  Microbial Protein Synthesis (MPS), and Dry Matter and Organic Matter Digestibility. The HSD test showed that the highest production of  VFA,Ratio A/P, N-NH3, Microbial Protein Synthesis (MPS), Dry Matter and Organic Matter Digestibility were achieved at R2 followed by R1 and R0 respectively. The conclusion is that the ammoniated rice straw supplemented with concentrate can be recommended to be fed to buffalo


2022 ◽  
Vol 951 (1) ◽  
pp. 012004
Author(s):  
S Nayohan ◽  
K G Wiryawan ◽  
A Jayanegara

Abstract The aim of this study was to determine the effect of coating urea by chitosan at graded levels on ammonia concentration and rumen fermentation in vitro. This study used Factorial Randomized Complete Block Design (RCBD) to test ammonia parameter and Randomized Complete Block Design (RCBD) for pH, microbial protein synthesis, dry matter and organic matter digestibility, and Volatile Fatty Acid (VFA). The treatments tested were: P0 = addition non coating urea 1%; P1 = coating urea by chitosan 1%; P2 = coating urea by chitosan 2%; P3 = coating urea by chitosan 3%. The data obtained were analysed by using ANOVA and continued with Tukey HSD test with SPSS version 25. The results of this study showed that the coating of urea chitosan had no significant effect on pH, dry matter and organic matter digestibility, microbial protein synthesis, and amonia concentration in the rumen. However, it significantly reduced (P <0.05) total VFA concentration. It can be concluded that the application of urea coating by chitosan does not affect on the degradation of urea in the rumen.


1996 ◽  
Vol 36 (7) ◽  
pp. 803 ◽  
Author(s):  
JG Mulholland ◽  
KS Nandra ◽  
GB Scott ◽  
AW Jones ◽  
NE Coombes

A study was made over 2 years of the nutritive value of the subterranean clover (Trifolium subterraneum L.) cultivars, Trikkala, Larisa and Goulburn, in grazing experiments with Border Leicester x Merino lambs. Liveweight gain was similar for all cultivars in the first year and in the second year was higher on Larisa (153 g/day) compared with Goulburn and Trikkala (131 and 103 g/day, respectively). Wool growth was not significantly different between cultivars. Both the digestibility and water-soluble carbohydrate content of the petiole and stem plant fraction were significantly (P<0.05) higher than those of the leaf fraction, even though the leaf had a lower level of cell wall organic matter. The ratio of lignin to cell wall organic matter was also higher in the leaf fraction. Samples obtained via oesophageal fistula showed that petioles comprised most of the dry matter in the diet and, thus, were the major contributor to energy supply. Differences were found in the degradability characteristics of the 3 cultivars which led to significant (P<0.05) differences in the concentration of rumen degradable dry matter and effective rumen degradable protein (ERDP). During the vegetative and early flowering stages, the concentration of ERDP exceeded the supply of fermentable metabolisable energy required for microbial protein synthesis. In mature clover, the concentration of ERDP was low and limiting microbial protein synthesis. The degradation characteristics of protein were highly correlated with liveweight gain (r2 = 0.90) and wool growth (r2 = 0.70). It is suggested that increasing the petiole : leaf ratio could increase the efficiency of utilisation of subterranean clover diets.


2015 ◽  
Vol 15 (2) ◽  
pp. 289-305 ◽  
Author(s):  
Maja Fijałkowska ◽  
Barbara Pysera ◽  
Krzysztof Lipiński ◽  
Danuta Strusińska

Abstract Losses of crude protein during ensiling of herbages, in contrast to carbohydrates, do not affect the reduction of its content; their form is changed into greater solubility non-protein compounds and also highly degraded forms, which lower the efficiency of the microbial protein synthesis in the rumen. These processes are accompanied by a change of amino acid composition of herbage protein and decrease in intestinal digestibility of protein from feeds as a result of the formation of indigestible complexes with carbohydrates (ADIN). Reduction of protein degradation in silages is achieved by accelerated acidity through addition of acids or dominance of homofermentative bacteria. The positive effects of fermentation inhibitors or sorbents use, as well as the wilting of raw material on the level and rate of protein degradation were demonstrated by many researchers. A greater contribution of protein nitrogen and reduction of deamination in silages can also be obtained by using bacteria inoculants. Increasing the proportion of protein nitrogen is accompanied by the improved efficiency of microbial protein synthesis.


2010 ◽  
Vol 39 (5) ◽  
pp. 1141-1145 ◽  
Author(s):  
Alexandre Lima de Souza ◽  
Rasmo Garcia ◽  
Luciano da Silva Cabral ◽  
Mara Lúcia Albuquerque Pereira ◽  
Rilene Ferreira Diniz Valadares

It was evaluated nitrogen compounds and microbial protein synthesis in heifers fed diets containing coffee hulls (0.0; 8.75; 17.25; and 26.25% of dry matter) replacing ground corn concentrate at the following levels of coffee hulls in the total diet dry matter: 0.0, 3.5, 7.0 or 10.5%. It was used 24 crossbreed heifers (7/8, 15/16 and 31/32 Holstein-Zebu), which were distributed in a random block design made up accordingly to the weight of the animals. Spot samples of urine were colleted aproximatelly four hours after morning feeding and were used to estimate microbial protein synthesis by using urine purine derivatives. It was not observed effect of coffee hull levels in the diet on total nitrogen intake (160 g/day) and nitrogen excretion in the urine (87.4 g/day). The inclusion of coffee hull in the diet linearly increased nitrogen excretion in feces, as well as nitrogen balance. There was linear reduction in urinary excretion of allantoin, in total purine derivative and absorbed purine, which reduced 0.715, 0.873, and 0.954 mmol/day to each coffee hull unity added to the concentrate, respectively. Coffee hull altered microbial protein synthesis, which reduced in 0.687 g/day to each coffee hull unity added to the concentrate. Reduction in microbial protein synthesis can reduce weight gain in heifers fed coffee hulls.


2016 ◽  
Vol 154 (6) ◽  
pp. 1102-1109 ◽  
Author(s):  
E. DE JESUS DOS SANTOS ◽  
M. L. ALBUQUERQUE PEREIRA ◽  
M. PEREIRA DE FIGUEIREDO ◽  
H. G. DE OLIVEIRA SILVA ◽  
J. FERREIRA DA CRUZ ◽  
...  

SUMMARYThe experiment, conducted at Bahia, Brazil, from May to August 2010, aimed to evaluate the nitrogen (N) balance, urea excretion and microbial protein synthesis in lactating goats fed pelleted concentrates with the addition of crude protein (CP), obtained by replacing alfalfa hay with soybean meal. The diets consisted of different levels of CP and 200 g of roughage (Tifton 85 hay)/kg. Maize and mesquite bran were used as the energy source, with maize replaced by mesquite bran in the ratio of 1·7:1. Eight female Saanen goats were used, confined in individual pens and allocated to a 4 × 4 Latin square design. The N balance in the body was positive, and loss of body weight (–0·03 g/day) was observed for the diet with 190 g CP/kg. The concentration (mg/dl) of urea in urine, milk and blood plasma was positively influenced in a linear form, and the highest rate of increase was found in urine, with 2 mg/dl for every 10 g CP/kg added to the diet. The microbial protein synthesis was not affected, but the diets reduced the microbial protein (44 g/day) and its ruminal production efficiency (30 g/kg total digestible nutrients). The levels above 190 g of CP are not recommended because of the energy expenditure required to excrete the urea.


Author(s):  
J L Jacobs ◽  
A B McAllan

The addition to grass during ensiling of enzymes capable of hydrolysing forage polysaccharides has been shown to result in increased fermentation of dry matter within the silo (Jacobs & McAllan, 1987). Thus it appears that the enzymes promoted cellular breakdown within the silo. It is also possible that the enzymes may also have made available greater amounts of structural carbohydrate for utilisation within the rumen. Such an increase in available energy may be reflected in improved microbial activity in the rumen resulting in increased microbial protein synthesis. The present experiment examines the effects of enzyme treated silages on the flow of nitrogenous constituents at the duodenum of growing steers.


2020 ◽  
Vol 4 (2) ◽  
pp. 839-847
Author(s):  
Daryoush Alipour ◽  
Atef Mohamed Saleem ◽  
Haley Sanderson ◽  
Tassilo Brand ◽  
Laize V Santos ◽  
...  

Abstract This study evaluated the effect of combinations of feed-grade urea and slow-release urea (SRU) on fermentation and microbial protein synthesis within two artificial rumens (Rusitec) fed a finishing concentrate diet. The experiment was a completely randomized, dose–response design with SRU substituted at levels of 0% (control), 0.5%, 1%, or 1.75% of dry matter (DM) in place of feed-grade urea, with four replicate fermenters per dosage. The diet consisted of 90% concentrate and 10% forage (DM basis). The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Dry matter and organic matter disappearances were determined after 48 h of incubation from day 9 to 12, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured from day 9 to 12. Microbial protein synthesis was determined on days 13–15. Increasing the level of SRU quadratically affected total VFA (Q, P = 0.031) and ammonia (Q, P = 0.034), with a linear increment in acetate (L, P = 0.01) and isovalerate (L, P = 0.05) and reduction in butyrate (L, P = 0.05). Disappearance of neutral detergent fiber (NDF) and acid detergent fiber (ADF) was quadratically affected by levels of SRU, plateauing at 1% SRU. Inclusion of 1% SRU resulted in the highest amount of microbial nitrogen associated with feed particles (Q, P = 0.037). Responses in the efficiency of microbial protein synthesis fluctuated (L, P = 0.002; Q, P = 0.001) and were the highest for 1% SRU. In general, the result of this study showed that 1% SRU in combination with 0.6% urea increased NDF and ADF digestibility and total volatile fatty acid (TVFA) production.


Sign in / Sign up

Export Citation Format

Share Document