scholarly journals BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING

Author(s):  
Milagro FERNÁNDEZ-DELGADO ◽  
Héctor ROJAS ◽  
Zoilabet DUQUE ◽  
Paula SUÁREZ ◽  
Monica CONTRERAS ◽  
...  
2018 ◽  
Vol 81 (4) ◽  
pp. 582-592 ◽  
Author(s):  
HYE RI JEON ◽  
MI JIN KWON ◽  
KI SUN YOON

ABSTRACT Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.


1996 ◽  
Vol 59 (8) ◽  
pp. 827-831 ◽  
Author(s):  
ISABEL C. BLACKMAN ◽  
JOSEPH F. FRANK

The objective of this research was to determine the ability of Listeria monocytogenes to grow as a biofilm on various food-processing surfaces including stainless steel, Teflon®, nylon, and polyester floor sealant. Each of these surfaces was able to support biofilm formation when incubation was at 21°C in Trypticase soy broth (TSB). Biofilm formation was greatest on polyester floor sealant (40% of surface area covered after 7 days of incubation) and least on nylon (3% coverage). The use of chemically defined minimal medium resulted in a lack of biofilm formation on polyester floor sealant, and reduced biofilm levels on stainless steel. Biofilm formation was reduced with incubation at 10°C, but Teflon® and stainless steel still allowed 23 to 24% coverage after incubation in TSB for 18 days. Biofilm growth of L. monocytogenes was sufficient to provide a substantial risk of this pathogen contaminating the food-processing plant environment if wet surfaces are not maintained in a sanitary condition.


2003 ◽  
Vol 69 (9) ◽  
pp. 5648-5655 ◽  
Author(s):  
Trond Møretrø ◽  
Lene Hermansen ◽  
Askild L. Holck ◽  
Maan S. Sidhu ◽  
Knut Rudi ◽  
...  

ABSTRACT In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.


2019 ◽  
Vol 7 (4) ◽  
pp. 95 ◽  
Author(s):  
Zhi Ma ◽  
Emmanuel W. Bumunang ◽  
Kim Stanford ◽  
Xiaomei Bie ◽  
Yan D. Niu ◽  
...  

Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.


2020 ◽  
Vol 66 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Emmanuel W. Bumunang ◽  
Collins N. Ateba ◽  
Kim Stanford ◽  
Tim A. McAllister ◽  
Yan D. Niu

This study examined the biofilm-forming ability of six non-O157 Shiga-toxin-producing Escherichia coli (STEC) strains: O116:H21, wzx-Onovel5:H19, O129:H21, O129:H23, O26:H11, and O154:H10 on stainless steel coupons after 24, 48, and 72 h of incubation at 22 °C and after 168 h at 10 °C. The results of crystal violet staining revealed that strains O129:H23 and O154:H10 were able to form biofilms on both the submerged surface and the air–liquid interface of coupons, whereas strains O116:H21, wzx-Onovel5:H19, O129:H21, and O26:H11 formed biofilm only at the air–liquid interface. Viable cell counts and scanning electron microscopy showed that biofilm formation increased (p < 0.05) over time. The biofilm-forming ability of non-O157 STEC was strongest (p < 0.05) at 22 °C after 48 h of incubation. The strongest biofilm former regardless of temperature was O129:H23. Generally, at 10 °C, weak to no biofilm was observed for isolates O154:H10, O116:H21, wzx-Onovel5:H19, O26:H11, and O129:H21 after 168 h. This study found that temperature affected the biofilm-forming ability of non-O157 STEC strains. Overall, our data indicate a high potential for biofilm formation by the isolates at 22 °C, suggesting that non-O157 STEC strains could colonize stainless steel within food-processing facilities. This could serve as a potential source of adulteration and promote the dissemination of these potential pathogens in food.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanna Puranen ◽  
Kati Riekkinen ◽  
Jenni Korhonen

Listeria monocytogenes bacteria pose a particular risk to the food industry as the species is known to form biofilm and to survive in a wide range of challenging environmental conditions. L. monocytogenes can cause listeriosis, a serious food-borne disease, and effective and safe antibiofilm materials and sanitary methods for food processing environments are intensively sought. A variety of nanoparticle materials have been recognized as safe to use in food environments, which allows the application of nanomaterials also for food safety purposes. Nanoparticles together with light illumination generate reactive oxygen species which inactivate bacteria by breaking down cell membranes, proteins, and DNA. The main objective of this study was to evaluate the efficacy of nanomaterials and blue light illumination for L. monocytogenes ATCC 7644 biofilm inactivation. Biofilm was allowed to form for 72 h on nanocoated stainless steel and aluminum plates, after which the plates were illuminated. Non-coated control plates were used to evaluate the antibiofilm efficacy of nanocoating. Plate count method was used to evaluate bacteria counts after illumination. Nanocoating did not affect initial biofilm formation compared to the control plates. Biofilm was significantly (p &lt; 0.05) reduced on stainless steel, aluminum, and TiO2-coated aluminum plates after 72-h illumination by 1.9, 3.2, and 5.9 log, respectively. Nanocoating with visible light illumination could be an effective and safe method for enhancing food safety in food processing facilities to control biofilm formation. Evidence of antibiofilm properties of nanomaterials together with visible light illumination is limited; hence, future studies with variable light intensities and nanomaterials are needed.


2017 ◽  
Vol 80 (3) ◽  
pp. 368-375 ◽  
Author(s):  
Yuejia Lee ◽  
Chinling Wang

ABSTRACT Listeria monocytogenes, a lethal foodborne pathogen, has the ability to resist the hostile food processing environment and thus frequently contaminates ready-to-eat foods during processing. It is commonly accepted that the tendency of L. monocytogenes' to generate biofilms on various surfaces enhances its resistance to the harshness of the food processing environment. However, the role of biofilm formation in the transferability of L. monocytogenes EGDe remains controversial. We examined the growth of Listeria biofilms on stainless steel surfaces and their effect on the transferability of L. monocytogenes EGDe. The experiments were a factorial 2 × 2 design with at least three biological replicates. Through scanning electron microscopy, a mature biofilm with intensive aggregates of cells was observed on the surface of stainless steel after 3 or 5 days of incubation, depending on the initial level of inoculation. During biofilm development, L. monocytogenes EGDe carried out binary fission vigorously before a mature biofilm was formed and subsequently changed its cellular morphology from rod shaped to sphere shaped. Furthermore, static biofilm, which was formed after 3 days of incubation at 25°C, significantly inhibited the transfer rate of L. monocytogenes EGDe from stainless steel blades to 15 bologna slices. During 7 days of storage at 4°C, however, bacterial growth rate was not significantly impacted by whether bacteria were transferred from biofilm and the initial concentrations of transferred bacteria on the slice. In conclusion, this study is the first to report a distinct change in morphology of L. monocytogenes EGDe at the late stage of biofilm formation. More importantly, once food is contaminated by L. monocytogenes EGDe, contamination proceeds independently of biofilm development and the initial level of contamination when food is stored at 4°C, even if contamination with L. monocytogenes EGDe was initially undetectable before storage.


2012 ◽  
Vol 48 (4) ◽  
pp. 737-745
Author(s):  
Heloísa Maria Ângelo Jerônimo ◽  
Rita de Cássia Ramos do Egypto Queiroga ◽  
Ana Caroliny Vieira da Costa ◽  
Isabella de Medeiros Barbosa ◽  
Maria Lúcia da Conceição ◽  
...  

This study assessed the effect of different growth media [BHI broth, BHI broth plus glucose (10 g/100 mL) and BHI broth plus NaCl (5 g/100 mL)] and incubation temperatures (28 or 37 ºC) on the adherence, detachment and biofilm formation on polypropylene and stainless steel surfaces (2 x 2 cm coupons) for a prolonged period (24-72 h) by some strains of Staphylococcus aureus (S3, S28 and S54) from food processing plants. The efficacy of the sanitizers sodium hypochlorite (250 mg/mL) and peracetic acid (30 mg/mL) in reducing the number of viable bacterial cells in a preformed biofilm was also evaluated. S. aureus strains adhered in highest numbers in BHI broth, regardless of the type of surface or incubation temperature. Cell detachment from surfaces revealed high persistence over the incubation period. The number of cells needed for biofilm formation was noted in all experimental systems after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered onto polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacities to adhere and form biofilms on polypropylene and stainless steel surfaces under the different growth conditions, and the cells in biofilm matrixes were resistant to total removal when exposed to the sanitizers sodium hypochlorite and peracetic acid.


Sign in / Sign up

Export Citation Format

Share Document