scholarly journals Oxygen release, microleakage and shear bond strength of composite restorations after home dental bleaching

2011 ◽  
Vol 26 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Marcelo Tomás de Oliveira ◽  
Mauro Amaral Caldeira de Andrade ◽  
Márcia Michels
2010 ◽  
Vol 141 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Marcos Eugenio Bittencourt ◽  
Micheline Sandini Trentin ◽  
Maria Salete Sandini Linden ◽  
Ynara Bosco de Oliveira Lima Arsati ◽  
Fabiana Mantovani Gomes França ◽  
...  

2012 ◽  
Vol 37 (1) ◽  
pp. 28-36 ◽  
Author(s):  
L Giachetti ◽  
D Scaminaci Russo ◽  
M Baldini ◽  
C Goracci ◽  
M Ferrari

Clinical Relevance Aged silorane composite restorations can be repaired with a methacrylate-based resin composite by using a phosphate-methacrylate–based adhesive as the intermediate layer.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Homa Farhadifard ◽  
Loghman Rezaei-Soufi ◽  
Maryam Farhadian ◽  
Parisa Shokouhi

Abstract Background At present, the demand for orthodontic treatment is on the rise. On the other hand, evidence shows that the bond strength of composite resins to old composite restorations is often unreliable. Therefore, the aim of this in vitro study was to assess the effect of different surface treatments on shear bond strength (SBS) of ceramic brackets to old composite restorations. Methods In this in vitro experimental study, 60 nano-hybrid composite discs were fabricated. For aging, the discs were incubated in deionized water at 37 °C for 1 month. Next, they underwent 4 different surface treatments namely acid etching with 37% phosphoric acid, sandblasting, grinding, and Er,Cr:YSGG laser irradiation. Ceramic brackets were then bonded to the discs and underwent SBS testing. Results The maximum mean SBS value was obtained in the grinding group (9.16 ± 2.49 MPa), followed by the sandblasting (8.13 ± 2.58 MPa) and laser (6.57 ± 1.45 MPa) groups. The minimum mean SBS value was noted in the control group (5.07 ± 2.14 MPa). Conclusion All groups except for the control group showed clinically acceptable SBS. Therefore, grinding, sandblasting, and Er,Cr:YSGG laser are suggested as effective surface treatments for bonding of ceramic orthodontic brackets to aged composite.


2017 ◽  
Vol 42 (2) ◽  
pp. E71-E80 ◽  
Author(s):  
RF Zanatta ◽  
M Lungova ◽  
AB Borges ◽  
CRG Torres ◽  
H-G Sydow ◽  
...  

SUMMARY Objectives: The aim of this study was to evaluate microleakage and shear bond strength of composite restorations under different cycling conditions. Methods and Materials: Class V cavities were prepared in the buccal and lingual surfaces of 30 human molars (n=60). A further 60 molars were used to prepare flat enamel and dentin specimens (n=60 each). Cavities and specimens were divided into six groups and pretreated with an adhesive (self-etch/Clearfil SE Bond or etch-and-rinse/Optibond FL). Composite was inserted in the cavities or adhered to the specimens' surfaces, respectively, and submitted to cycling (control: no cycling; thermal cycling: 10,000 cycles, 5°C to 55°C; thermal/erosive cycling: thermal cycling plus storage in hydrochloric acid pH 2.1, 5 minutes, 6×/day, 8 days). Microleakage was quantified by stereomicroscopy in enamel and dentin margins after immersion in silver nitrate. Specimens were submitted to shear bond strength testing. Statistical analysis was done by two-way analysis of variance and Kruskal-Wallis tests (p<0.05). Results: Microleakage in enamel margins was significantly lower in the control group compared with thermal cycling or thermal/erosive cycling. Erosive conditions increased microleakage compared with thermal cycling (significant only for Clearfil SE Bond). No significant differences were observed in dentin margins. Bond strength of enamel specimens was reduced by thermal cycling and thermal/erosive cycling when Clearfil SE Bond was used and only by thermal/erosive cycling when Optibond FL was used. No differences were observed among dentin specimens. Conclusions: Thermal/erosive cycling can adversely affect microleakage and shear bond strength of composite resin bonded to enamel.


2021 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Syarifah Nadhira Assyafira Al-Habsyi ◽  
Kun Ismiyatin ◽  
Galih Sampoerno

Background: Tooth discoloration can be treated with dental bleaching using Hydrogen peroxide (H2O2). Dental bleaching may interfere with the shear bond strength of composite resins because the remaining free radicals can affect bonding polymerization. Epigallocatcehin-3-gallate (EGCG) as an antioxidant can neutralize the free radicals produced during bleaching process. Purpose: Analyze the role of EGCG antioxidants in increasing the shear bond strength of composite resin after bleaching.. Reviews: Of the seven journals included in this literature review, six journals reported significant difference, and one journal noted no significant difference in the shear bond strength of composite resin following the EGCG application. Conclusion: The use of EGCG can increase the shear bond strength value of post-bleaching composite resin restorations. 


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2613
Author(s):  
Akimasa Tsujimoto ◽  
Masao Irie ◽  
Erica Cappelletto Nogueira Teixeira ◽  
Carlos Alberto Jurado ◽  
Yukinori Maruo ◽  
...  

To evaluate the flexural and bonding properties, marginal adaptation, and polymerization shrinkage in flowable composite restorations and their relationships, four new generation flowable composites, one conventional, and one bulk-fill flowable composite were used in this study. Flexural properties of the composites and shear bond strength to enamel and dentin for flowable restorations were measured immediately and 24 h after polymerization. Marginal adaptation, polymerization shrinkage, and stress were also investigated immediately after polymerization. The flexural properties, and bond strength of the flowable composites to enamel and dentin were much lower immediately after polymerization than at 24 h, regardless of the type of the composite. Polymerization shrinkage and stress varied depending on the material, and bulk-fill flowable composite showed much lower values than the others. The marginal adaptation and polymerization shrinkage of the composites appeared to have a much stronger correlation with a shear bond strength to dentin than to enamel. The weak mechanical properties and bond strengths of flowable composites in the early stage after polymerization must be taken into account when using them in the clinic. In addition, clinicians should be aware that polymerization shrinkage of flowable composites can still lead to the formation of gaps and failure of adaptation to the cavity regardless of the type of composite.


Sign in / Sign up

Export Citation Format

Share Document