scholarly journals Relationships between Flexural and Bonding Properties, Marginal Adaptation, and Polymerization Shrinkage in Flowable Composite Restorations for Dental Application

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2613
Author(s):  
Akimasa Tsujimoto ◽  
Masao Irie ◽  
Erica Cappelletto Nogueira Teixeira ◽  
Carlos Alberto Jurado ◽  
Yukinori Maruo ◽  
...  

To evaluate the flexural and bonding properties, marginal adaptation, and polymerization shrinkage in flowable composite restorations and their relationships, four new generation flowable composites, one conventional, and one bulk-fill flowable composite were used in this study. Flexural properties of the composites and shear bond strength to enamel and dentin for flowable restorations were measured immediately and 24 h after polymerization. Marginal adaptation, polymerization shrinkage, and stress were also investigated immediately after polymerization. The flexural properties, and bond strength of the flowable composites to enamel and dentin were much lower immediately after polymerization than at 24 h, regardless of the type of the composite. Polymerization shrinkage and stress varied depending on the material, and bulk-fill flowable composite showed much lower values than the others. The marginal adaptation and polymerization shrinkage of the composites appeared to have a much stronger correlation with a shear bond strength to dentin than to enamel. The weak mechanical properties and bond strengths of flowable composites in the early stage after polymerization must be taken into account when using them in the clinic. In addition, clinicians should be aware that polymerization shrinkage of flowable composites can still lead to the formation of gaps and failure of adaptation to the cavity regardless of the type of composite.

2013 ◽  
Vol 4 (1) ◽  
pp. 6-16 ◽  
Author(s):  
BM Shivalinga ◽  
S Pradeep ◽  
Ravi Shanthraj ◽  
H Jyothi Kiran

ABSTRACT Aim To evaluate and compare shear bond strength (SBS) and debonding characters of the Transbond XT (BisGMA-based composite), Esthet-X flow (flowable composite), Filtek Z-350 (flowable composite). Materials and methods A total of 90 human premolars were divided into group I, Transbond XT (n = 30); group II, Esthet-X flow (n = 30) and group III, Filtek Z-350 (n = 30), the preadjusted edgewise stainless steel premolar brackets were bonded to evaluate the shear bond and debonding properties. Results The results of the statistical analysis comparing the three groups indicated no statistically significant differences between the groups. In general, the SBS with groups I and III exhibited similar bond strength with 11.58 ± 1.3 MPa and 11.07 ± 1.0 MPa respectively. Groups III exhibited least bond strength of 10.7 ± 2 MPa. In modified adhesive remnant index (ARI) the majority of bond failures occurred at enamel-adhesive interface or cohesive type failure in all the three groups. Groups II and III showed increased frequency of score 2, 4 and 5 compared to group I which showed increased frequency of score 0 and 1. Conclusion When considering the SBS and ARI scores obtained, flowable composites can be effectively applied to orthodontic bracket bonding. How to cite this article Pradeep S, Shanthraj R, Kiran HJ, Shivalinga BM. Comparative Evaluation of the Shear Bond Strength and Debonding Properties of a Conventional Composite and Flowable Composites used for Orthodontic Bracket Bonding. World J Dent 2013;4(1):6-16.


2016 ◽  
Vol 5 (1) ◽  
pp. 6 ◽  
Author(s):  
MerveErkmen Almaz ◽  
AylinAkbay Oba ◽  
IşılŞaroğlu Sönmez ◽  
Deniz Sönmez

2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Mahtab Ebrahimi Nezhad ◽  
Dana Jafarpour ◽  
Mahdi Gholamrezaei Saravi

Objective: The present study aimed to assess the influence of vibration effect on microshear bond strength (µSBS) of flowable composite to enamel. Material and Methods: Sixty non-carious extracted human premolar teeth were collected and randomly divided into six groups (n = 10) after being trimmed to produce a smooth flat surface: Flowable composites [Wave (SDI), Wave HV (SDI) and Grandioflow (Voco)] were used as bonding agents without or with vibration using an ultrasonic scaler (Mini Piezon, EMS, Switzerland). Composite resin, with an internal diameter of 0.7mm and height of 1mm, was cured on the substrate. The specimens’ µSBS was tested by a microtensile tester (Bisco, USA) at a crosshead speed of 0.5 mm/min. The bond strength values were analyzed using one-way ANOVA and post hoc Tukey test (p < 0.05). Results: Vibration did not lead to any significant difference in the µSBS values of Wave, Wave HV, and Grandio Flow µSBS values (P=0.690, P=1.000 and P=0.947, respectively). No significant difference was found between flowable composites in terms of micro shear bond strength to enamel (p > 0.05). Conclusions: The application of ultrasonic vibration might not be advantageous in terms of improving the shear bond strength of flowable composites to enamel. KEYWORDS Bond strength; Enamel; Flowable composite; Ultrasonic; Vibration.


2020 ◽  
Vol 45 (5) ◽  
pp. 496-505
Author(s):  
CS Sampaio ◽  
PG Pizarro ◽  
PJ Atria ◽  
R Hirata ◽  
M Giannini ◽  
...  

Clinical Relevance Shortened light curing does not affect volumetric polymerization shrinkage or cohesive tensile strength but negatively affects the shear bond strength of some bulk-fill resin composites. When performing shortened light curing, clinicians should be aware of the light output of their light-curing units. SUMMARY Purpose: To evaluate volumetric polymerization shrinkage (VPS), shear bond strength (SBS) to dentin, and cohesive tensile strength (CTS) of bulk-fill resin composites (BFRCs) light activated by different modes. Methods and Materials: Six groups were evaluated: Tetric EvoCeram bulk fill + high mode (10 seconds; TEC H10), Tetric EvoFlow bulk fill + high mode (TEF H10), experimental bulk fill + high mode (TEE H10), Tetric EvoCeram bulk fill + turbo mode (five seconds; TEC T5), Tetric EvoFlow bulk fill + turbo mode (TEF T5), and experimental bulk fill + turbo mode (TEE T5). Bluephase Style 20i and Adhese Universal Vivapen were used for all groups. All BFRC samples were built up on human molar bur-prepared occlusal cavities. VPS% and location were evaluated through micro–computed tomography. SBS and CTS tests were performed 24 hours after storage or after 5000 thermal cycles; fracture mode was analyzed for SBS. Results: Both TEC H10 and TEE H10 presented lower VPS% than TEF H10. However, no significant differences were observed with the turbo-curing mode. No differences were observed for the same BFRC within curing modes. Occlusal shrinkage was mostly observed. Regarding SBS, thermal cycling (TC) affected all groups. Without TC, all groups showed higher SBS values for high mode than turbo mode, while with TC, only TEC showed decreased SBS from high mode to turbo modes; modes of fracture were predominantly adhesive. For CTS, TC affected all groups except TEE H10. In general, no differences were observed between groups when comparing the curing modes. Conclusions: Increased light output with a shortened curing time did not jeopardize the VPS and SBS properties of the BFRCs, although a decreased SBS was observed in some groups. TEE generally showed similar or improved values for the tested properties in a shortened light-curing time. The VPS was mostly affected by the materials tested, whereas the SBS was affected by the materials, curing modes, and TC. The CTS was not affected by the curing modes.


2017 ◽  
Vol 42 (1) ◽  
pp. E24-E34 ◽  
Author(s):  
GA Maghaireh ◽  
NA Taha ◽  
H Alzraikat

SUMMARY This article aims to review the research done on the silorane-based resin composites (SBRC) regarding polymerization shrinkage and contraction stresses and their ability to improve the shortcomings of the methacrylate-based resin composites (MRBC). Special attention is given to their physical and mechanical properties, bond strength, marginal adaptation, and cusp deflection. The clinical significance of this material is critically appraised with a focus on the ability of SBRC to strengthen the tooth structure as a direct restorative material. A search of English peer-reviewed dental literature (2003-2015) from PubMed and MEDLINE databases was conducted with the terms “low shrinkage” and “silorane composites.” The list was screened, and 70 articles that were relevant to the objectives of this work were included.


2013 ◽  
Vol 24 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Ana Caroline Silva Gama ◽  
Andre Guaraci de Vito Moraes ◽  
Lilyan Cardoso Yamasaki ◽  
Alessandro Dourado Loguercio ◽  
Ceci Nunes Carvalho ◽  
...  

The purpose of this study was to evaluate in vitro the shear bond strength to enamel, flexural strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey's test (α=0.05). The shear bond strength values were significantly lower (p<0.05) for the flowable composites compared with the orthodontic composite. For the flexural strength, no statistically significant difference was found among the composites (p>0.05) while the flexural modulus was significantly higher (p<0.05) for Transbond XT than for Filtek Z-350 flow and Opallis flow. The orthodontic composite presented significantly lower contraction stress values than the flowable composites (p<0.05). The light-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites.


2010 ◽  
Vol 141 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Marcos Eugenio Bittencourt ◽  
Micheline Sandini Trentin ◽  
Maria Salete Sandini Linden ◽  
Ynara Bosco de Oliveira Lima Arsati ◽  
Fabiana Mantovani Gomes França ◽  
...  

2008 ◽  
Vol 78 (6) ◽  
pp. 1105-1109 ◽  
Author(s):  
Dong-Bum Ryou ◽  
Hyo-Sang Park ◽  
Kyo-Han Kim ◽  
Tae-Yub Kwon

Abstract Objective: To test the bonding characteristics of four flowable composites for orthodontic bracket bonding. Materials and Methods: Metal brackets were bonded to acid-etched human enamel using four flowable composites (Grandio Flow, GF; UniFil Flow, UF; UniFil LoFlo Plus, UL; and DenFil Flow, DF), an orthodontic bonding system (Transbond XT, TX), and a restorative composite (Filtek Z250, FZ). After 24 hours of storage in water at 37°C, a shear bond strength (SBS) test was performed. After debonding, the adhesive remnant index (ARI) was assessed. In addition, the flow and flexural strength of the materials were examined. Results: The SBS for the flowable composites ranged between 7.2 and 8.3 MPa, and TX showed a significantly higher value (mean 10.9 MPa). The flowable composites also demonstrated a significantly superior flowability, yet inferior flexural strength (except for DF) than TX and FZ. Two flowable composites (GF and UL) produced significantly higher ARI scores than TX and FZ, which represented a larger resin remnant on the enamel surfaces after debonding. Conclusion: When considering the SBS and ARI scores obtained in this study, flowable composites with no intermediate bonding resin could be conveniently applied for orthodontic bracket bonding.


Sign in / Sign up

Export Citation Format

Share Document