scholarly journals Impact of acute static-stretching on the optimal height in drop jumps

2014 ◽  
Vol 20 (1) ◽  
pp. 65-70
Author(s):  
Leonardo A. Pasqua ◽  
Nilo M. Okuno ◽  
Mayara V. Damasceno ◽  
Adriano. E. Lima-Silva ◽  
Rômulo Bertuzzi

This study analyzed the effect of static stretching on performance during drop jumps. Furthermore, we investigated if a reduction in drop height would compensate the stretching-caused alterations. Ten physically active male subjects performed drop jumps at four different drop heights without static stretching for the optimal drop height determination. After, they performed drop jumps on two drop heights with static stretching previously. The jump height, contact time and reactive strength index were significantly affected by static stretching. However, only the contact time was significantly improved by the reduction in drop height with previous static stretching. Our results suggest that the decrement in performance after static stretching could be partially compensated by a reduction in drop height, which decreases the contact time near a non-stretching jump condition. This can be explained by the lower landing velocity and, possibly, the smaller reduction in the activation of the plantar flexors muscles. In conclusion, the reduction in drop height seems to be interesting after a static stretching session, aiming to expose the athletes to lower impact forces to maintain jump performance.

Sports ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 114 ◽  
Author(s):  
Florian Tenelsen ◽  
Dennis Brueckner ◽  
Thomas Muehlbauer ◽  
Marco Hagen

The aim of the present study was to investigate the concurrent validity and the test–retest reliability of an electronic contact mat for drop jump assessment in physically active adults. Seventy-nine young, physically active adults participated in the validity study, and 49 subjects were recruited for the reliability study. The motor task required subjects to perform two-legged drop jumps using drop heights of 24, 43, and 62 cm as well as one-legged drop jumps with the left and right leg using a drop height of 24 cm. Ground contact times were simultaneously quantified with an electronic contact mat, a force plate (i.e., gold standard), and a light-barrier system (another criterion device). Concurrent validity was assessed using intraclass correlation coefficient (ICC), systematic bias, limits of agreement, and linear regression analysis. Test–retest reliability (one week apart) was determined by calculating the ICC, the standard error of measurement (SEM), the coefficient of variation (CV), and Lin´s concordance correlation coefficient (рc). Further, we determined the minimal detectable change (MDC95%). Irrespective of drop height and jump condition, good agreements between testing devices (ICC ≥ 0.95) were shown. Compared to the force plate (−0.6 to 3.1 ms) but not to the light-barrier system (31.4 to 41.7 ms), the contact mat showed low systematic bias values. In terms of test–retest reliability, our analyses showed that the measuring devices are in agreement (ICC: 0.70–0.92; SEM: 8.5–18.4 ms; CV: 3.6–6.4%). Depending on the measurement device, drop height, and jump condition, a MDC95% value ranging from 23.6 to 50.9 ms represents the minimum amount of change needed to identify practical relevant effects in repeated measurements of drop jump performance. Our findings indicate that the electronic contact mat is a valid and reliable testing device for drop jump assessment from different drop heights in young physically active adults.


2020 ◽  
Vol 32 (2) ◽  
pp. 81-88 ◽  
Author(s):  
K. Katsikari ◽  
Eleni Bassa ◽  
Dimitrios Skoufas ◽  
Savvas Lazaridis ◽  
Christos Kotzamanidis ◽  
...  

Purpose: To examine the effect of a 10-week plyometric training (PT) on the kinematic and kinetic properties of prepubescent girls during squat jump, countermovement jump, and drop jumps. Methods: Twenty-four untrained girls (aged 9–11 y) were assigned to a training group (TG) and a control group. The TG followed twice a week PT for 10 weeks. Squat jump, countermovement jump, and drop jumps performed from heights of 20, 35, and 50 cm were tested before and after PT. Jump height, kinematic, and kinetic parameters were evaluated using a motion analysis system and a force plate. Results: Jumping height in all jump types increased significantly after PT for the TG (P < .001). After training, the TG presented increased power (P < .001) and knee angular velocity (P < .001), higher knee flexion at the deepest point during the braking phase (P < .001), longer contact time (P < .001), and unchanged stiffness and reaction strength index (P > .05). No differences were observed in the control group (P > .05). Conclusion: These findings indicate that a 10-week PT positively affected jumping performance in prepubescent girls who improved their drop jump performance after training not by adopting a stiff/bouncing jumping style of short contact time and increased stiffness, but a compliant/absorbing style of prolonged contact time.


2016 ◽  
Vol 54 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Robin Healy ◽  
Ian C. Kenny ◽  
Andrew J. Harrison

AbstractThe aim of this study was to assess the concurrent validity of the Optojump™ system (Microgate, Bolzano, Italy) versus a force platform in the estimation of temporal and reactive strength measures. In two separate investigations, twenty physically active males performed double-leg and single-leg drop jumps from a box height of 0.3 m and a 10 s vertical bilateral hopping test. Contact time, flight time and total time (the sum of contact and flight time) were concurrently assessed during single and double-leg drop jumps and during hopping. Jump height, the reactive strength index and the reactive strength ratio were also calculated from contact time and flight time. Despite intraclass correlation coefficients (ICCs) for all variables being close to 1 (ICC > 0.975), a significant overestimation was found in contact time (0.005 ± 0.002 s) and underestimations in flight time (0.005 ± 0.003 s), the reactive strength index (0.04 ± 0.02 m·s-1) and the reactive strength ratio (0.07 ± 0.04). Overestimations in contact time and underestimations in flight time were attributed to the physical design of the Optojump™ system as the transmitter and receiver units were positioned 0.003 m above the floor level. The Optojump™ demonstrated excellent overall temporal validity with no differences found between systems for total time. Coaches are advised to be consistent with the instrumentation used to assess athletes, however, in the case of comparison between reactive strength values collected with the Optojump™ and values collected with a force platform, regression equations are provided.


1997 ◽  
Vol 22 (2) ◽  
pp. 117-132 ◽  
Author(s):  
Andrew D. Walshe ◽  
Gregory J. Wilson

This study investigated the relationship between musculotendinous stiffness and the ability to perform dynamic stretch-shorten cycle actions involving a range of eccentric loads. Twenty trained male subjects performed a series of quasi-static muscular actions in a supine leg press position, during which a brief perturbation was applied. The resulting damped oscillations allowed the estimation of each subject's maximal musculotendinous stiffness (k) for the lower body musculature. All subjects also performed a countermovement jump (CMJ) and a series of drop jumps (DJs) from heights of 20, 40, 60, 80, and 100 cm. When the jump heights of the nine most compliant (mean k = 11.4 ± 2.7 kN•m−1) and nine stiffest (mean k = 20.5 ± 2.5 kN•m−1) subjects were compared, the stiff subjects demonstrated significantly poorer capacity to perform under the highest (DJ80 and DJ100) eccentric loading conditions. It was hypothesised that the relatively greater forces transmitted from the skeletal system to the musculature of the stiff subjects reduced their ability to attenuate the higher eccentric loads due to less effective contractile dynamics and greater levels of reflex induced inhibition. Key words: series elastic component, compliance, drop jump, muscle elasticity, eccentric contraction


2016 ◽  
Vol 27 (5) ◽  
pp. 511-522 ◽  
Author(s):  
Francesco Budini ◽  
Markus Tilp

AbstractSpinal reflex excitability is traditionally assessed to investigate neural adjustments that occur during human movement. Different experimental procedures are known to condition spinal reflex excitability. Among these, lengthening movements and static stretching the human triceps have been investigated over the last 50 years. The purpose of this review is to shed light on several apparent incongruities in terms of magnitude and duration of the reported results. In the present review dissimilarities in neuro-spinal changes are examined in relation to the methodologies applied to condition and measure them. Literature that investigated three different conditioning procedures was reviewed: passive dorsiflexion, active dorsiflexion through antagonists shortening and eccentric plantar-flexors contractions. Measurements were obtained before, during and after lengthening or stretching. Stimulation intensities and time delays between conditioning procedures and stimuli varied considerably. H-reflex decreases immediately as static stretching is applied and in proportion to the stretch degree. During dorsiflexions the inhibition is stronger with greater dorsiflexion angular velocity and at lower nerve stimulation intensities, while it is weaker if any concomitant muscle contraction is performed. Within 2 s after a single passive dorsiflexion movement, H-reflex is strongly inhibited, and this effect disappears within 15 s. Dorsiflexions repeated over 1 h and prolonged static stretching training induce long-lasting inhibition. This review highlights that the apparent disagreement between studies is ascribable to small methodological differences. Lengthening movements and stretching can strongly influence spinal neural pathways. Results interpretation, however, needs careful consideration of the methodology applied.


Author(s):  
Dorota Gryka ◽  
Wanda Pilch ◽  
Marta Szarek ◽  
Zbigniew Szygula ◽  
Łukasz Tota

Abstract


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 132 ◽  
Author(s):  
Brandon Snyder ◽  
Shawn Munford ◽  
Chris Connaboy ◽  
Hugh Lamont ◽  
Shala Davis ◽  
...  

The purpose of this study was to compare different methods for assessing plyometric ability during countermovement (CMJ) and drop jumps (DJ) in a group of adults and adolescents. Ten resistance-trained adult men (age: 22.6 ± 1.6 years) and ten adolescent male basketball players (age: 16.5 ± 0.7 years) performed a CMJ and a DJ from a height of 0.40 m. Jump height (JH), contact time, normalized work (WNORM), and power output (PONORM) during the absorption and propulsion phases were calculated from force platforms and 3-D motion analysis data. Plyometric ability was assessed using the modified reactive strength index (RSIMOD during CMJ) and the reactive strength index (RSI during DJ) as well as three indices using propulsion time, propulsion work (PWI), and propulsion power. Adults jumped significantly higher than adolescents (mean difference [MD]: 0.05 m) while JH (MD: 0.05 m) and ground contact time (MD: 0.29 s) decreased significantly from CMJ to DJ. WNORM (MD: 4.2 J/kg) and PONORM (MD: 24.2 W/kg) during the absorption phase of CMJ were significantly less than these variables during the propulsion phases of the jumps. The reactive strength index variants increased significantly from the CMJ to DJ (MD: 0.23) while all other plyometric indices decreased significantly. Neither RSIMOD nor RSI contributed significantly to the prediction of JH during CMJ and DJ, respectively, while PWI was able to explain ≥68% of the variance in JH. Variants of the reactive strength index do not reflect the changes in mechanical variables during the ground contact phase of CMJ and DJ and may not provide an accurate assessment of plyometric ability during different vertical jumps.


2017 ◽  
Vol 23 (5) ◽  
pp. 380-384
Author(s):  
Márcio Rabelo Mota ◽  
Sandro Nobre Chaves ◽  
Maurílio Tiradentes Dutra ◽  
Ricardo Jacó de Oliveira ◽  
Renata Aparecida Elias Dantas ◽  
...  

ABSTRACT Introduction: Pre-prandial exercise promotes greater mobilization of fat metabolism due to the increased release of catecholamines, cortisol, and glucagon. However, this response affects how the cardiovascular system responds to exercise. Objective: To evaluate the response of systolic, diastolic, and mean blood pressure, heart rate (HR) and rate-pressure product (RPP) to pre- and postprandial exercise. Methods: Ten physically active male subjects (25.50 ± 2.22 years) underwent two treadmill protocols (pre- and postprandial) performed for 36 minutes at 65% of VO2max on different days. On both days, subjects attended the laboratory on a 10-hour fasting state. For the postprandial session, volunteers ingested a pre-exercise meal of 349.17 kcal containing 59.3 g of carbohydrates (76.73%), 9.97 g of protein (12.90%), and 8.01 g of lipids (10.37%). Blood pressure, HR and RPP were measured before and after exercise. The 2x2 factorial Anova with the multiple comparisons test of Bonferroni was applied to analyze cardiovascular variables in both moments (pre- vs. postprandial). The significance level was set at p<0.05. Results: Systolic (121.70 ± 7.80 vs. 139.78 ± 12.91 mmHg) and diastolic blood pressure (66.40 ± 9.81 vs. 80.22 ± 8.68 mmHg) increased significantly after exercise only in the postprandial session (p<0.05). HR increased significantly (p<0.05) after both protocols (64.20 ± 15.87 vs. 141.20 ± 10.33 bpm pre-prandial and 63.60 ± 8.82 vs. 139.20 ± 10.82 bpm postprandial). RPP had a similar result (8052.10 ± 1790.68 vs. 18382.60 ± 2341.66 mmHg.bpm in the pre-prandial session and 7772.60 ± 1413.76 vs. 19564.60 ± 3128.99 mmHg.bpm in the postprandial session). Conclusion: These data suggest that fasted exercise does not significantly alter the blood pressure. Furthermore, the meal provided before the postprandial exercise may promote a greater blood pressure responsiveness during exercise.


Sign in / Sign up

Export Citation Format

Share Document