scholarly journals Experimental study of shear transfer in slim floor systems using precast concrete hollow core slabs and steel beam with web circular opening

Author(s):  
Gustavo Coldebella ◽  
Sineval Esteves Pereira Junior ◽  
Silvana De Nardin

Abstract Steel-concrete slim flooring system using precast concrete hollow core slabs and steel beam with web openings is an innovative construction system designed to combine the high bending resistance of both precast prestressed hollow core slabs and steel beam with web openings. This system can provide floor systems with a minimum constructional depth in comparison with ordinary composite floors. The aim of this study was to evaluate in an exploratory way the shear transferring mechanism between the steel beam with circular web opening and the precast hollow-concrete slab. The shear connection is formed by in-situ concrete passes through the web openings and infill the voids of the precast slabs. One push-out test was conducted to investigate the shear transferring mechanism of shear connection and the experimental results were compared to analytical methods. The shear resistance of the shear connection was predicted with good accurate by analytical methods.

2019 ◽  
pp. 1-17
Author(s):  
Mohamed H. Makhlouf ◽  
Hala M. Refat

This paper presents an experimental and numerical study carried out to investigate the flexural and shear behavior of concrete-steel composite beams with circular web openings strengthened using two different techniques around openings. The experimental program conducted on nine simply supported beams which were constructed with different variables. One steel beam and eight concrete-steel composite beams were experimentally tested. The tested beams are of 1500 mm length and BFI cross section of steel beam but composite beams were BFI steel section connected with concrete slab had 300 mm width and 70 mm depth, while this connection is done by headed stud shear connector. The tested specimens subjected to positive bending were loaded by one or two line load across the width of the concrete slab. The main parameters were the type of beams, web openings effect, location of web openings, strengthening techniques around openings externally CFRP strips and vertical steel links using steel plates placed on the top and bottom surface of beams anchored with fine threads, and number of CFRP strips layers. The effect of these parameters on the failure of modes, ultimate load, first cracking load and deflection were investigated. Moreover, a finite element models were developed by ANSYS (version 14) to simulate all the tested specimens, experimental test results were compared with FE results obtained. The experimental results showed that both strengthening systems applied in this research were remarkably increased the beam strength, and the capacity retrieve of beams without openings. This study approved that steel links technique gave more prominent simplicity of use and low cost. FEM models were in good agreement with the corresponding experimental ones. However, the calculated ultimate loads were slightly higher than the experimental ultimate loads up to 10%.


2016 ◽  
Vol 7 (4) ◽  
pp. 316-327
Author(s):  
Serdar Selamet ◽  
Caner Bolukbas

Purpose This paper aims to present a numerical investigation on the fire performance of a single plate shear connection in a steel-framed composite floor. Large-scale fire experiments show that the tensile membrane action of the concrete slab enhances the fire performance of composite floors. The enhancement in the performance is contributed to large slab deflections. However, these deflections cause significant rotations and tensile force in the single plate connection. Design/methodology/approach A finite element model is constructed, which consists of a secondary steel beam, concrete slab and shear connection components. The interaction between the connection components such as bolts and single plate is defined by contact surfaces. The analysis is conducted in two uncoupled phases: thermal analysis by creating fire boundaries on the composite floor model with convective and radiative heat transfer, and mechanical analysis by considering thermal expansion and changes in the material stiffness and strength due to temperature. Findings The thermo-mechanical analysis of the composite floor finite element model shows that the structure survives the 2-h Standard fire, but the connection fails by bolt shear and buckling of the connection plate. Originality/value This paper investigates the fire performance of a shear connection in a steel-framed concrete slab. Previous work generally focused on the concrete slab behavior only. The originality of the research is that the connection is considered as part of a sub-assembly and is subjected to forces due to concrete and steel beam interaction.


1983 ◽  
Vol 10 (4) ◽  
pp. 713-721 ◽  
Author(s):  
R. G. Redwood ◽  
G. Poumbouras

Tests of composite beams comprising a concrete slab supported on a steel deck and a steel wide-flange shape containing large web openings are described. Special attention is directed to the amount of shear connection between slab and steel section in the region of a web hole, and on the effect of construction loads acting on the steel section prior to composite action being effective.It is shown that limited shear connection at the hole will significantly affect the strength when loading produces a high shear-to-moment ratio, and a theory is presented which conservatively takes this into account. The effect of construction loads on unshored construction is shown to be small when these do not exceed 60% of the non-composite beam resistance at the hole.


2018 ◽  
Vol 203 ◽  
pp. 06010
Author(s):  
Nadiah Loqman ◽  
Nor Azizi Safiee ◽  
Nabilah Abu Bakar ◽  
Noor Azline Mohd Nasir

Conventional steel-concrete composite beams have been recognized to exhibit stronger structural characteristics, in terms of strength and stiffness, when compared to pure steel or reinforced concrete beams. However, currently most steel beam is fully attached to the concrete slab; this means that the shear connectors are welded through the steel decking on to the steel beam and cast into concrete slab to fulfill the necessary shear connection. Recently, the deconstruction and reuse of the components almost impossible. In order to achieve a sustainable structural system, precast concrete slabs are attached to a steel beam using bolted shear connectors in prefabricated holes have been introduced as an alternative to the conventional connectors in steel – concrete composite beam system. This paper reviews the structural behavior of composite beam system such as the strength, stiffness, slip behavior, failure mode and sustainability obtained by experiment and numerical studies in order to address the applicability and efficiency of the composite beams having precast concrete slabs and bolted shear connectors.


2018 ◽  
Vol 21 (3) ◽  
pp. 393-404
Author(s):  
Ali Farhan Hadeed ◽  
Laith Khalid Al-Hadithy ◽  
Riyadh J. Aziz

The composite opened web steel joist supported floor systems have been common for many years. It is economic and has light weight and can embed the electrical conduit, ductwork and piping, eliminating the need for these to pass under the member, consequently eliminate the height between floors. In order to study the joist strength capacity under the various conditions, it had been fabricated seven joists composed of the steel and concrete slab connected to the top chord by shear connectors (headed studs). These joist have 2820 mm length c/c of the supports and 235 mm overall depth. In the present study, six variable parameters are adopted (Studs distribution, Degree of shear connection, Degree of the web inclination, Shape of the web, Density of concrete for slab and length of the shear connector). The test results exhibited that minimum strength capacity was 160kN for light weight joist and maximum capacity was 225kN for joist of long shear connectors at failure. The results were compared by ultimate flexural model by Azmi.


Castellated beams are made from the conventional I section by the process named as Castellation Process. As of late, broad examination on these castellated steel beams has been directed, including various shapes in web openings. The primary objective of these examination works was to assess and dissect its ideal opening sizes and shapes arrangement. For the most part castellated beam are given hexagonal, round and square formed openings. The finite element investigation is most favored technique for comprehension the flexural strength of castellated beams. In this examination, experimental and numerical displaying approach is utilized for deciding spacing between openings on hexagonal castellated beam. ANSYS software was utilized for the investigation. Opening edge 60o with various opening dispersing 0.15d and 0.25d have beam utilized. Investigation was selected steel beam with and without web openings of ISMB 150 and solid ISMB200 section. Results demonstrated that the castellated bar with hexagonal opening indicated more load carrying capacity and less significant deflection contrasted with solid beam.


2021 ◽  
pp. 136943322199434
Author(s):  
Yuanxin Xia ◽  
Chunxiu Han ◽  
Donghua Zhou ◽  
Yonghui Wang ◽  
Peng Wang

This paper presents a new type of composite slim floor beam, determined by combining the results of an experimental study and theoretical analysis of the ultimate flexural strength of slim floor beams. The shear connectors play a significant role in the mechanical properties of this type of composite slim floor beam, because the precast concrete slab is laid on the bottom flange of the steel section and because the upper portion of the steel beam is encased in the cast-in-place concrete slab. To investigate the ultimate flexural strength, three specimens, which included headed studs, transverse steel bar shear connectors and no shear connectors, were tested. Additionally, a detailed numerical analysis was performed to verify the experimental results, which indicated that a higher-strength steel beam and thicker concrete slab can effectively enhance the stiffness and flexural capacity of the composite slim floor beam. Based on plastic mechanics and limit analysis theory, a calculation method was derived to estimate the ultimate flexural strength of a composite slim floor beam, and a comparison between the calculation and experimental results shows that the theoretical results exhibit good agreement with the experimental results, and the proposed analysis method can be used in future studies to gain a better understanding of the ultimate flexural strength of composite slim floor beams.


Sign in / Sign up

Export Citation Format

Share Document