scholarly journals Structural Behavior of Steel-Concrete Composite Beam using Bolted Shear Connectors: A Review

2018 ◽  
Vol 203 ◽  
pp. 06010
Author(s):  
Nadiah Loqman ◽  
Nor Azizi Safiee ◽  
Nabilah Abu Bakar ◽  
Noor Azline Mohd Nasir

Conventional steel-concrete composite beams have been recognized to exhibit stronger structural characteristics, in terms of strength and stiffness, when compared to pure steel or reinforced concrete beams. However, currently most steel beam is fully attached to the concrete slab; this means that the shear connectors are welded through the steel decking on to the steel beam and cast into concrete slab to fulfill the necessary shear connection. Recently, the deconstruction and reuse of the components almost impossible. In order to achieve a sustainable structural system, precast concrete slabs are attached to a steel beam using bolted shear connectors in prefabricated holes have been introduced as an alternative to the conventional connectors in steel – concrete composite beam system. This paper reviews the structural behavior of composite beam system such as the strength, stiffness, slip behavior, failure mode and sustainability obtained by experiment and numerical studies in order to address the applicability and efficiency of the composite beams having precast concrete slabs and bolted shear connectors.

2018 ◽  
Vol 64 (2) ◽  
pp. 97-110
Author(s):  
V. Jayanthi ◽  
C. Umarani

AbstractShear connectors are designed in steel-concrete composite construction to transmit the longitudinal shear, to prevent separation of steel and concrete slabs, and also to increase the structural efficiency of the whole system. In this study, the performances of different types of shear connectors in steel-concrete composite specimens are evaluated by conducting push-out tests under monotonic loading conditions. An ISMB 200 @ 25.4 kg/m universal steel beam measuring 400 mm and a reinforced cement concrete slab measuring 300 mm with a breadth of 200 mm and a thickness of 200 mm reinforced with 8 mm diameter steel rods are used for the experimental study. The results reveal that the load-slip relationships for various types of shear connectors and failure mechanisms are obtained to identify those shear connectors which are more relevant to the steel - concrete composite members.


2017 ◽  
Vol 27 (4) ◽  
pp. 143-156 ◽  
Author(s):  
Maciej Szumigała ◽  
Ewa Szumigała ◽  
Łukasz Polus

Abstract This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 54
Author(s):  
T Subramani ◽  
A Periasamy

Composite plays a vital role in replacing the existing mild steel in reinforcement and exterior truss structure. This study proposed to design shear connector for joining concrete slab and steel section. Shear connectors has analyzed and predict the best connector for a particular composite beam with respect to static load and the amount of steel in the connector as a common aspect. The use of composite structures is increasingly present in civil construction works nowadays. Composite beams, especially, are structures which include substances, a metal phase placed in particular inside the tension region and a concrete phase, positioned in the compression go sectional location, both are related with the aid of steel gadgets called shear connectors. The main features of this connector are to permit the weight for the joint the beam-column, to restriction longitudinal slipping and uplifting on the factors interface the shear forces. Our project paper presents 3D numerical models of steel-concrete composite beams to simulate their structural behaviour, with emphasis on the beam column interface using Simulations software ANSYS 18.1 based on the Finite Element Method. Mostly these type of structures are widely used in the dynamic loading structures like bridges and high rise buildings.  


2018 ◽  
Vol 11 (4) ◽  
pp. 757-778
Author(s):  
A. R. SILVA ◽  
L. E. S. DIAS

Abstract Most of the engineering problems involving structural elements of steel-concrete composite beam type are approximations of the structural problem involving concrete plates connected by connectors to steel beams. Technical standards allow the replacement of the concrete plate element by a beam element by adopting a reduction in the width of the plate element known as effective width. The effective width is obtained, in most technical norms, taking into account only the parameters of beam span length and distance between adjacent beams. Numerical and experimental works found in the literature show that this effective width depends on several other parameters, such as the width and thickness of the concrete slab, and the type of loading. The objective of this work is to verify the influence of the partial interaction in the evaluation of the effective width of composite beams formed by a concrete slab connected to a steel beam with deformable connection, being used in numerical simulation three types of finite elements: a plate element for nonlinear analysis of the concrete slab; a bar element for non-linear analysis of beams with cross-section defined by a polygon; and an interface element which connects the plate and beam elements, simulating the deformation effect of the shear connectors. In the studied examples, it was found that the reduction of the shear connection stiffness at the interface between the concrete slab and the steel beam leads to a decrease in the shear lag effect and, consequently, makes the effective width of the concrete slab closer to the its real width. In another example, curves are constructed to define the effective width of a composite beam with medium stiffness. Considering maximum stresses and maximum displacements, these curves are obtained by forcing the equivalence of the approximate model with the model closest to the real problem.


2019 ◽  
Vol 9 (1) ◽  
pp. 207 ◽  
Author(s):  
Xinggui Zeng ◽  
Shao-Fei Jiang ◽  
Donghua Zhou

In a steel-concrete composite beam (hereafter referred to as a composite beam), partial interaction between the concrete slab and the steel beam results in an appreciable increase in the beam deflections relative to full interaction behavior. Moreover, the distribution type of the shear connectors has a great impact on the degree of the composite action between the two components of the beam. To reveal the effect of shear connector layout in the performance of composite beams, on the basis of a developed one-dimensional composite beam element validated by the closed-form precision solutions and experimental results, this paper optimizes the layout of shear connectors in composite beams with partial interaction by adopting a stepwise uniform distribution of shear connectors to approximate the triangular distribution of the shear connector density without increasing the total number of shear connectors. Based on a comparison of all the different types of stepped rectangles distribution, this paper finally suggests the 3-stepped rectangles distribution of shear connectors as a reasonable and applicable optimal method.


2013 ◽  
Vol 351-352 ◽  
pp. 427-433 ◽  
Author(s):  
S.O. Bamaga ◽  
M.Md. Tahir

Introducing low cost housing is one of the challenges face civil engineers now-days. Using lightweight construction materials i.e. cold formed steel sections is an alternate solution to overcome the challenge. In this study, a lightweight composite beam was introduced. It consists of cold formed steel section and profiled concrete slab. Experimental push tests were conducted to investigate the ductility and strength capacities of new and innovative shear connectors. The shear connectors were easy to form and give advantages to speed up the fabrication process of the proposed composite beam. The shear connectors showed large deformation and strength capacities. It is concluded that the proposed shear connectors could be used for lightweight composite beams.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Elder Nogueira Da Silva ◽  
Alex Sander Clemente De Souza

RESUMO: O presente trabalho apresenta uma metodologia para análise numérica de vigas mistas de aço e concreto protendidas utilizando o pacote computacional ABAQUS®, que permite modelagens via método dos elementos finitos. A metodologia aborda aspectos relacionados a escolha dos elementos finitos utilizados, geometria das malhas, relações constitutivas dos materiais, condições de acoplamento e vinculação entre os materiais e procedimentos de aplicação dos carregamentos, com o objetivo de simular o comportamento da estrutura. A interação entre laje de concreto e viga de aço foi modelada com conectores e elementos de contato e considerando somente o acoplamento das redes de elementos finitos da laje e da viga. A validação do modelo numérico foi realizada através da correlação entre os resultados numéricos e experimentais disponíveis na literatura. Para ambas as formas de vinculação laje-perfil, o modelo numérico representou de forma satisfatória o comportamento observado experimentalmente. Nos casos em que foram modelados os conectores de cisalhamento as vigas apresentaram menor rigidez e consequentemente melhor correlação entre resultados numéricos e experimentais.ABSTRACT: This paper reports a methodology adopted to represent the behavior of prestressed steel concrete composite beam by finite element models using software ABAQUS®. The methodology presents aspects related to the choice of finite elements types, mesh geometry, constitutive relations of materials, boundary conditions, steel-concrete interaction and sequence of loading.  The interaction between the concrete slab and the steel profile was carried out modeling the shear connectors, using contact elements to modeling the interface and after was carried out using TIE constraint. The validation of the numerical model was carried through the correlation between the numerical and experimental results and it was adequate to simulate the experimentally tested beams for both forms of slab profile bonding, especially for the cases where the shear connectors were modeled, because the beams presented lower stiffness and consequently greater proximity of the experimental results.


1986 ◽  
Vol 13 (5) ◽  
pp. 575-582 ◽  
Author(s):  
S. Elkelish ◽  
Hugh Robinson

The effective width of the concrete slab of a composite beam is used in the determination of its moment resistance and service load moment for the purposes of structural design of the composite beam. It is usually assumed that the same effective width of the concrete slab may be used for both ultimate strength and elastic stage calculations.This paper presents the results of an analytical investigation of the variation of the effective width of composite beams and ribbed slabs formed by ribbed metal deck in both the elastic and inelastic stages and at ultimate load. A layered finite element method is used to model the composite beam. The influence of four variables on the effective width of the composite beams was studied, namely, type of loading, beam span to actual concrete slab width, ultimate compressive strength of the concrete, and steel beam size.It was found that the effect of the compressive strength of the concrete and the size of the steel beam have negligible influence on the effective width of the concrete slab. The effective width of the slab at ultimate load is of the order of 4% larger than that in the elastic range.The effective width used for the design of composite beams under a uniformly distributed load, which is the practical loading in most cases, is significantly different from that which should be used for any other type of loading.


Author(s):  
Nguyen Tran Hieu

Nowadays, with the development of cutting and welding technologies, steel beams with regular circular openings, called cellular beams, have been widely used for construction. The cellular beams could be designed either as steel beam or composite beam when headed shear connectors connect concrete slab to top flange of steel beam. This paper presents a procedure to design cellular composite beams according to EN 1994-1-1. In addition, a parametric study is carried out to evaluate the influence of circular opening geometry to ultimate load and failure mode of a series of cellular composite beams. As a result, an optimal dimension of cellular beam is proposed. Article history: Received 28 February 2018, Revised 22 March 2018, Accepted 27 April 2018


2021 ◽  
pp. 136943322199434
Author(s):  
Yuanxin Xia ◽  
Chunxiu Han ◽  
Donghua Zhou ◽  
Yonghui Wang ◽  
Peng Wang

This paper presents a new type of composite slim floor beam, determined by combining the results of an experimental study and theoretical analysis of the ultimate flexural strength of slim floor beams. The shear connectors play a significant role in the mechanical properties of this type of composite slim floor beam, because the precast concrete slab is laid on the bottom flange of the steel section and because the upper portion of the steel beam is encased in the cast-in-place concrete slab. To investigate the ultimate flexural strength, three specimens, which included headed studs, transverse steel bar shear connectors and no shear connectors, were tested. Additionally, a detailed numerical analysis was performed to verify the experimental results, which indicated that a higher-strength steel beam and thicker concrete slab can effectively enhance the stiffness and flexural capacity of the composite slim floor beam. Based on plastic mechanics and limit analysis theory, a calculation method was derived to estimate the ultimate flexural strength of a composite slim floor beam, and a comparison between the calculation and experimental results shows that the theoretical results exhibit good agreement with the experimental results, and the proposed analysis method can be used in future studies to gain a better understanding of the ultimate flexural strength of composite slim floor beams.


Sign in / Sign up

Export Citation Format

Share Document