scholarly journals Experimental Investigation on Behavior of Composite Open Web Steel Joists

2018 ◽  
Vol 21 (3) ◽  
pp. 393-404
Author(s):  
Ali Farhan Hadeed ◽  
Laith Khalid Al-Hadithy ◽  
Riyadh J. Aziz

The composite opened web steel joist supported floor systems have been common for many years. It is economic and has light weight and can embed the electrical conduit, ductwork and piping, eliminating the need for these to pass under the member, consequently eliminate the height between floors. In order to study the joist strength capacity under the various conditions, it had been fabricated seven joists composed of the steel and concrete slab connected to the top chord by shear connectors (headed studs). These joist have 2820 mm length c/c of the supports and 235 mm overall depth. In the present study, six variable parameters are adopted (Studs distribution, Degree of shear connection, Degree of the web inclination, Shape of the web, Density of concrete for slab and length of the shear connector). The test results exhibited that minimum strength capacity was 160kN for light weight joist and maximum capacity was 225kN for joist of long shear connectors at failure. The results were compared by ultimate flexural model by Azmi.

2021 ◽  
Vol 295 (2) ◽  
pp. 16-26
Author(s):  
D.V. Konin ◽  

The shear connector design should be executed according to the SP 266.1325800.2016. For the different typed of welded connectors are there analytic dependences, which could be used for shear connection strength estimation. The design code also allows to use powder-actuated Z-shape shear connectors. Their bearing capacity should be proved by tests according to the GOST R 58336-2018. Inasmuch the GOST doesn't consist the test estimation approach, the authors offer the method. For the test estimation methods the test results of 15 series specimen had been used. The results were compared with estimation according to the European standard for the verification.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


2016 ◽  
Vol 78 (6-12) ◽  
Author(s):  
Mustapha Muhammad Lawan ◽  
Mahmood Md. Tahir ◽  
Emad Hosseinpour

In conventional composite construction for hot-rolled steel (HRS) section, the composite action is usually achieved by using headed studs shear connectors. But, for cold-formed steel (CFS) section, the use of headed studs is not feasible as the section is very thin and difficult to be weld.  Therefore, an innovative way of shear connection mechanism of using bolt and nut is suggested in this study. This paper presents the feasibility of using bolt as shear connector by presenting experimental test results so as to explore more on their capability to be used as shear connectors. The study investigated the structural capability of the proposed bolted shear connector when used in concrete known as Self-compacting concrete (SCC) integrated with CFS to provide the required composite action. Push out test specimens with bolted shear connector of grade 8.8 at designated intervals longitudinally spaced were fabricated, cast and tested to failure. The results showed that the proposed shear connector was structurally capable and also an appreciable strength resistance was achieved. 


2018 ◽  
Vol 7 (2.12) ◽  
pp. 420
Author(s):  
Sindhu Nachiar S ◽  
Anandh S ◽  
Jeyem Veerarajan

Generally for any construction, normal conventional concrete is used to obtain required strength as per design. In the construction industry, now a day’s many construction techniques are in practice to minimise the self weight of concrete, thereby reducing the size of structural elements. One of the most widely adopting techniques is use of light weight concrete. But use of these light weight concrete do not fulfil the strength requirement as per the design of the structure. Hence it is used only as non-load bearing structural elements in the field. In view of this, in this study the attempt has been made to introduce the air voids in conventional concrete without compromising the strength. In this work the air voids are introduced in the concrete slabs and it is tested in the laboratory to know the performance. For this purpose, the slab of the size of 600mm x 600mm x 100mm is prepared with the voids of diameters 30mm, 35mm and 40mm. The voids are introduced in the concrete slab in four different configurations (line, X, I and matrix) to prepare the cellular elements. The normal and cellular slabs are tested under single point loading and the effect of various configurations is studied at the age of 28 days. From the test results, it was found that the slab with void volume of 1.59% shows the lowest stiffness and the slab with void volume of 2.28% shows the highest stiffness.


2019 ◽  
Vol 9 (4) ◽  
pp. 764 ◽  
Author(s):  
Shuangjie Zheng ◽  
Yuqing Liu ◽  
Yangqing Liu ◽  
Chen Zhao

To ease the installation of perforating rebars through multi-holes, an alternative notched perfobond shear connector was proposed by cutting out the hole edge. This paper presents the test results of six pull-out specimens with conventional and notched perfobond shear connectors. The objective was to compare the failure modes and pull-out behaviors of perfobond shear connectors using circular holes and notched holes. Furthermore, the explicit finite element method was introduced and validated to generate parametric results for pull-out tests of notched perfobond shear connectors. A total of 33 parametric simulations were performed to further study the influences of several variables, including the hole diameter, the cut width, the perfobond thickness, the concrete strength, the diameter and strength of the rebar, and the strength of the structural steel. The experimental and numerical results were used to evaluate the previous equations for perfobond shear connectors. Finally, an alternative equation was proposed to estimate the pull-out resistance of notched perfobond shear connectors.


Author(s):  
Matthew Sjaarda ◽  
Scott Walbridge ◽  
Jeffrey S. West

Steel-concrete composite construction is used extensively in bridges across North America. The welded shear stud is the standard connector used today, but other connectors, such as the through-bolt connector, may have advantages for precast construction or applications where better fatigue resistance or deconstructability is desired. The standard method of assessing the performance of a shear connector is through the use of push tests. However, the load-slip curves that result from these tests do not accurately predict load-slip behavior at the shear interface of the beams and girders they are meant to simulate. In this paper, a model is presented that predicts composite beam behavior using elastic material properties and nonlinear shear connector load-slip curves. The finite element (FE) model features link connector elements between a steel beam and concrete slab that can be programmed to simulate different connector types. Although the model can be used with push test load-slip curves as inputs, it is shown that a much better prediction can be made using force-deformation data from experimental beam tests or FE analysis. Results are discussed for stud connectors and through-bolt connectors, and it is shown that while through-bolts allow more interfacial slip and overall deflection, material stresses and composite interaction are not affected as much as might be expected. The outcome of this work is a comparison tool which can be used to assess the viability of current and future shear connection alternatives with the goal of achieving an economical and structurally sound shear connector.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 54
Author(s):  
T Subramani ◽  
A Periasamy

Composite plays a vital role in replacing the existing mild steel in reinforcement and exterior truss structure. This study proposed to design shear connector for joining concrete slab and steel section. Shear connectors has analyzed and predict the best connector for a particular composite beam with respect to static load and the amount of steel in the connector as a common aspect. The use of composite structures is increasingly present in civil construction works nowadays. Composite beams, especially, are structures which include substances, a metal phase placed in particular inside the tension region and a concrete phase, positioned in the compression go sectional location, both are related with the aid of steel gadgets called shear connectors. The main features of this connector are to permit the weight for the joint the beam-column, to restriction longitudinal slipping and uplifting on the factors interface the shear forces. Our project paper presents 3D numerical models of steel-concrete composite beams to simulate their structural behaviour, with emphasis on the beam column interface using Simulations software ANSYS 18.1 based on the Finite Element Method. Mostly these type of structures are widely used in the dynamic loading structures like bridges and high rise buildings.  


2012 ◽  
Vol 18 (5) ◽  
pp. 735-743 ◽  
Author(s):  
Hong-Chul Rhim ◽  
Kyung-Min Kim ◽  
Seung-Weon Kim

In this work, circular concrete-filled steel tubular (CCFT) columns, rather than the more popular H-shaped columns, were suggested as pre-founded columns for top-down construction. In addition, a novel shear connection system with headed stud shear connectors between the CCFT columns and the flat slabs was developed. It was noted that a CCFT column with a design compressive strength similar to that of an H-shaped column without consideration of length effects can be easily installed, even into a smaller borehole. Furthermore, compared to the H-shaped column, less steel is required for the CCFT column. It was shown that the amount of steel needed can be reduced by decreasing the wall thicknesses or diameters of the CCFT column depending on the exposed length of the column during excavation. The fillet-welded joint of the developed shear connector system was also tested before its in-situ application. The test results revealed that the joint possessed sufficient shear and deformation capacities. The CCFT column with the developed shear connection system was ultimately applied to an actual top-down construction process. The good constructability of the CCFT column system and reductions in construction costs and time were confirmed.


2017 ◽  
Vol 10 (3) ◽  
pp. 592-625
Author(s):  
J. G. R. NETO ◽  
A. M. SARMANHO

ABSTRACT This work includes an analytical and experimental study of the structural behavior of shear connectors in composite columns, composed of concrete-filled circular hollow section. For this study was adopted a structural bolt like a shear connector in order to verify the validity of the analytical expressions in ABNT NBR 16239: 2014 [1]. Was carried out a series of push-out tests, fixing the outer diameter of the hollow section and varying the thickness, the bolt diameter, the strength of concrete and the hole dimension. Analysis of the results shows that is possible to use this type of shear connector. The Brazilian prescriptions results are conservative and may be adjusted to provide strength capacity value closest to the experiment.


1992 ◽  
Vol 19 (2) ◽  
pp. 279-295 ◽  
Author(s):  
Anita Brattland ◽  
D. J. Laurie Kennedy

Steel trusses acting compositely with concrete slabs on wide rib profile steel deck have proven to be an economical system for long span floors. The flexural behaviour of two composite trusses with a span of 11.5 m was studied. The truss configuration consisted of hollow structural section chords with double angle web members welded on either side. The flexural tests showed that ductile behaviour up to failure can be obtained without failure of the web members, provided that the design is based on the ultimate tensile strength of the bottom chord, and the web members and shear connection are designed for the concomitant forces. The maximum moments attained were about 1.2 times the unfactored ultimate moment predicted by CSA Standard S16.1. The maximum strain in the bottom chord of both trusses was significantly higher than the yield strain, but did not reach the ultimate strain due to premature shear connection failure. The failure mode of the first composite truss demonstrated the need for additional rules for establishing the length of stud shear connectors for use in slabs on ribbed deck, as has been incorporated in S16.1-M89. A design procedure for double angle web members was developed, based on the test results. Key words: behaviour, composite steel–concrete trusses, flexure, long span, ultimate moment resistance.


Sign in / Sign up

Export Citation Format

Share Document