Analyzing Flooding Impacts on Rural Access to Hospitals and other Critical Services in Rural Cambodia using Geo-Spatial Information and Network Analysis

2020 ◽  
Author(s):  
Xavier Espinet Alegre ◽  
Zuzana Stanton-Geddes ◽  
Sadig Aliyev ◽  
Veasna Bun
2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Ruru Shen ◽  
Haowen Yan ◽  
Qinke Sun ◽  
Xiaojun Li

<p><strong>Abstract.</strong> The spatial distribution of geotagged photos is a projection of the tourist's tourism activities in the geospatial space, which contains spatial attributes and interrelationships of tourists’ activities. Using the Flickr photo sharing website, the paper utilizes new data mining technologies to discover and capture the metadata of geotagged photos uploaded by visitors from January 2008 to October 2018 in the upper reach of the Yellow River in China. The spatial information processing and expression of the collected data are processed and the characteristics of the inbound tourists’ behavior are explored by the P-DBSCAN, the path tracking technology and the UCINET network analysis. The main results are as follows: (1) By using the P-DBSCAN cluster analysis, the area of interest (AOI) has a feature of high agglomeration and forms a “V” shaped in the Xining-Lanzhou-Yinchuan area. The concentration of AOIs is closely related to the urban functional area and has a clear Urban functional orientation. (2) Using tracking analysis, the paper reveals single node trajectory, intraregional path trajectory and interregional path trajectory. Among them, 68.42% visitors chose single node trajectory, 9.78% visitors chose intraregional path trajectory and 21.80% tourists chose interregional path trajectory. (3) Ten cross-regional tourism mainstream lines are picked by the UCINET network analysis mode. It has been found that the tourists tend to visit those famous scenic spots (points) such as the Qinghai Lake, the YaDan Geological Park, the ‘Danxia’ Landform, the Zhenbeibu China West Film Studio. It is apparent that the Gansu-Qinghai Great Circle Tour is a hot tourist route that tourists are keen to choose. The research results have certain reference significance for improving the transformation and upgrading of tourism industry in the upper reach of the Yellow River.</p>


Author(s):  
Greg Young

In this issue of GIS Trends we redefine how libraries can provide spatial information and plunge into the world of mobile maps. To help solve the problem of parking lot overcrowding, we learn how one library has used GIS data, network analysis and modern web technologies to create a unique application designed to connect drivers with the parking spot that is right for them.


Author(s):  
S. Atyabi ◽  
M. Kiavarz Moghaddam ◽  
A. Rajabifard

Abstract. Building Information Model (BIM) is a database, which makes a detailed 3D geometrical model with rich semantic information of building, go beyond the standard Computer-Aided Design approach. BIM could be as an ideal source to store, formation model and analyses spatial information of internal environments. GIS is an effective tool for analysing the constant and dynamic variables in small areas such as indoor environments. Therefore, integration of the BIM and GIS is useful for integrating the internal environment and networks for designing optimal routes in emergency evacuation problems. Increasing complexity of high-rise buildings and underground structures lead to much more complication in urban disaster management. One of the main challenges in disaster management and emergency evacuation is to guide people in optimal routes to reach safe areas. In this paper, in order to create optimal routes in internal environments and create an internal geometric network model based on the internal nodes and edges, BIM of a 3D commercial building located in the 8th district of Tehran, was made and transferred to the ARCGIS that enables us to use routing algorithms to find the optimize routes between both internal positions. Flammability, occupancy load, width of exit access and distance of fire point criteria were considered to find the safest routes in emergency evacuation times. Network Analysis and Ant Colony's algorithm were applied for finding the safest routes. The results indicated that the Network Analysis was better in terms of processing time and finding short and safe paths related to the Ant Colony's algorithm.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Vijay Krishnamurthi ◽  
Brent Bailey ◽  
Frederick Lanni

Excitation field synthesis (EFS) refers to the use of an interference optical system in a direct-imaging microscope to improve 3D resolution by axially-selective excitation of fluorescence within a specimen. The excitation field can be thought of as a weighting factor for the point-spread function (PSF) of the microscope, so that the optical transfer function (OTF) gets expanded by convolution with the Fourier transform of the field intensity. The simplest EFS system is the standing-wave fluorescence microscope, in which an axially-periodic excitation field is set up through the specimen by interference of a pair of collimated, coherent, s-polarized beams that enter the specimen from opposite sides at matching angles. In this case, spatial information about the object is recovered in the central OTF passband, plus two symmetric, axially-shifted sidebands. Gaps between these bands represent "lost" information about the 3D structure of the object. Because the sideband shift is equal to the spatial frequency of the standing-wave (SW) field, more complete recovery of information is possible by superposition of fields having different periods. When all of the fields have an antinode at a common plane (set to be coincident with the in-focus plane), the "synthesized" field is peaked in a narrow infocus zone.


Author(s):  
John R. Porter

New ceramic fibers, currently in various stages of commercial development, have been consolidated in intermetallic matrices such as γ-TiAl and FeAl. Fiber types include SiC, TiB2 and polycrystalline and single crystal Al2O3. This work required the development of techniques to characterize the thermochemical stability of these fibers in different matrices.SEM/EDS elemental mapping was used for this work. To obtain qualitative compositional/spatial information, the best realistically achievable counting statistics were required. We established that 128 × 128 maps, acquired with a 20 KeV accelerating voltage, 3 sec. live time per pixel (total mapping time, 18 h) and with beam current adjusted to give 30% dead time, provided adequate image quality at a magnification of 800X. The maps were acquired, with backgrounds subtracted, using a Noran TN 5500 EDS system. The images and maps were transferred to a Macintosh and converted into TIFF files using either TIFF Maker, or TNtolMAGE, a Microsoft QuickBASIC program developed at the Science Center. From TIFF files, images and maps were opened in either NIH Image or Adobe Photoshop for processing and analysis and printed from Microsoft Powerpoint on a Kodak XL7700 dye transfer image printer.


Author(s):  
RAD Mackenzie ◽  
G D W Smith ◽  
A. Cerezo ◽  
J A Liddle ◽  
CRM Grovenor ◽  
...  

The position sensitive atom probe (POSAP), described briefly elsewhere in these proceedings, permits both chemical and spatial information in three dimensions to be recorded from a small volume of material. This technique is particularly applicable to situations where there are fine scale variations in composition present in the material under investigation. We report the application of the POSAP to the characterisation of semiconductor multiple quantum wells and metallic multilayers.The application of devices prepared from quantum well materials depends on the ability to accurately control both the quantum well composition and the quality of the interfaces between the well and barrier layers. A series of metal organic chemical vapour deposition (MOCVD) grown GaInAs-InP quantum wells were examined after being prepared under three different growth conditions. These samples were observed using the POSAP in order to study both the composition of the wells and the interface morphology. The first set of wells examined were prepared in a conventional reactor to which a quartz wool baffle had been added to promote gas intermixing. The effect of this was to hold a volume of gas within the chamber between growth stages, leading to a structure where the wells had a composition of GalnAsP lattice matched to the InP barriers, and where the interfaces were very indistinct. A POSAP image showing a well in this sample is shown in figure 1. The second set of wells were grown in the same reactor but with the quartz wool baffle removed. This set of wells were much better defined, as can be seen in figure 2, and the wells were much closer to the intended composition, but still with measurable levels of phosphorus. The final set of wells examined were prepared in a reactor where the design had the effect of minimizing the recirculating volume of gas. In this case there was again further improvement in the well quality. It also appears that the left hand side of the well in figure 2 is more abrupt than the right hand side, indicating that the switchover at this interface from barrier to well growth is more abrupt than the switchover at the other interface.


1988 ◽  
Vol 53 (3) ◽  
pp. 316-327 ◽  
Author(s):  
Alan G. Kamhi ◽  
Hugh W. Catts ◽  
Daria Mauer ◽  
Kenn Apel ◽  
Betholyn F. Gentry

In the present study, we further examined (see Kamhi & Catts, 1986) the phonological processing abilities of language-impaired (LI) and reading-impaired (RI) children. We also evaluated these children's ability to process spatial information. Subjects were 10 LI, 10 RI, and 10 normal children between the ages of 6:8 and 8:10 years. Each subject was administered eight tasks: four word repetition tasks (monosyllabic, monosyllabic presented in noise, three-item, and multisyllabic), rapid naming, syllable segmentation, paper folding, and form completion. The normal children performed significantly better than both the LI and RI children on all but two tasks: syllable segmentation and repeating words presented in noise. The LI and RI children performed comparably on every task with the exception of the multisyllabic word repetition task. These findings were consistent with those from our previous study (Kamhi & Catts, 1986). The similarities and differences between LI and RI children are discussed.


2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document