Enhancing Agronomic Practices for Improved Ecosystem Resilience in I and D Operations

10.1596/34194 ◽  
2010 ◽  
Author(s):  
Svetlana Valieva
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Shahjahan Ali ◽  
Bikash Chandra Ghosh ◽  
Ataul Gani Osmani ◽  
Elias Hossain ◽  
Csaba Fogarassy

A lack of adaptive capacities for climate change prevents poor farmers from diversifying agricultural production in Bangladesh’s drought-resilient areas. Climate change adaptation strategies can reduce the production risk relating to unforeseen climatic shocks and increase farmers’ food, income, and livelihood security. This paper investigates rice farmers’ adaptive capacities to adapt climate change strategies to reduce the rice production risk. The study collected 400 farm-level micro-data of rice farmers with the direct cooperation of Rajshahi District. The survey was conducted during periods between June and July of 2020. Rice farmers’ adaptive capacities were estimated quantitatively by categorizing the farmers as high, moderate, and low level adapters to climate change adaptation strategies. In this study, a Cobb–Douglas production function was used to measure the effects of farmers’ adaptive capacities on rice production. The obtained results show that farmers are moderately adaptive in terms of adaptation strategies on climate change and the degree of adaptation capacities. Agronomic practices such as the quantity of fertilizer used, the amount of labor, the farm’s size, and extension contacts have a substantial impact on rice production. This study recommends that a farmer more significantly adjusts to adaptation strategies on climate change to reduce rice production. These strategies will help farmers to reduce the risk and produce higher quality rice. Consequently, rice farmers should facilitate better extension services and change the present agronomic practice to attain a higher adaptation status. It can be very clearly seen that low adaptability results in lower rice yields.


2007 ◽  
Vol 145 (3) ◽  
pp. 223-227 ◽  
Author(s):  
M. P. REYNOLDS ◽  
P. R. HOBBS ◽  
H. J. BRAUN

Wheat is grown on 210 million ha throughout the world producing approximately 600 million tonnes of grain (10 year average; FAO 2005) and providing on average one fifth of the total calorific input of the world's population (FAO 2003). For some regions such as North Africa, Turkey and Central Asia, wheat provides half of total dietary energy intake. Of the cultivated wheat area, half is located in less developed countries where there have been steady increases in productivity since the green revolution, associated with genetic improvements in yield potential, resistance to diseases and adaptation to abiotic stresses (Reynolds & Borlaug 2006a, b) as well as better agronomic practices (Derpsch 2005). Nonetheless, challenges to wheat production are still considerable, especially in the developing world, not only because of increased demand but also because of the increased scarcity of water resources (Rosegrant 1997; WMO 1997), ever more unpredictable climates (Fischer et al. 2002), increased urbanization and loss of good quality land away from agriculture (Hobbs 2007), and decreased public sector investment in agriculture and rural affairs (Falcon & Naylor 2005). To meet demand in a sustainable way, more resources are required to breed a new generation of genetically improved cultivars as well as implement resource-conserving agronomic management practices.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 402
Author(s):  
Rama Kant Dubey ◽  
Pradeep Kumar Dubey ◽  
Rajan Chaurasia ◽  
Ch Srinivasa Rao ◽  
Purushothaman Chirakkuzhyil Abhilash

Global agricultural production is accountable for the emission of ~30% of greenhouse gases. Therefore, the wide-scale adoptions of low-input, soil-friendly, and resource-conserving agronomic practices are imperative for the ‘planet healthy food production’ and also for reducing the carbon emissions from agricultural soil. In this context, the present study aimed to analyze the impacts of integrated agronomic interventions i.e., the application of arbuscular mycorrhizal fungi (AMF) + reduced tillage (RT), biochar + RT, and AMF + biochar + RT, on spatiotemporal variations in soil-quality and soil-sustainability indicators, including microbial and soil respiration, in the Indo-Gangetic Plain (IGP) of North India. For this, field experiments on the above-mentioned agronomic interventions were employed using three different staple crops (Zea mays, Vigna mungo, and Brassica juncea) growing in three different agro-climatic zones of IGP (Varanasi, Sultanpur, and Gorakhpur) in a randomized block design. Periodic data collection was done to analyze the changes in physiochemical, biological, and biochemical properties of the soil, and statistical analyses were done accordingly. Irrespective of the sites, the experimental results proved that the integrated application of AMF + biochar + RT in V. mungo resulted in the highest soil organic carbon (i.e., 135% increment over the control) and microbial biomass carbon (24%), whereas the same application (i.e., AMF + biochar + RT) in Z. mays had the maximum reduction in microbial (32%) and soil (44%) respiration. On the other hand, enhanced occurrence of glomalin activity (98%) was noted in Z. mays cropping for all the sites. Significant negative correlation between soil respiration and glomalin activity under AMF + biochar + RT (−0.85), AMF + RT (−0.82), and biochar + RT (−0.62) was an indication of glomalin’s role in the reduced rate of soil respiration. The research results proved that the combined application of AMF + biochar + RT was the best practice for enhancing soil quality while reducing respiration. Therefore, the development of suitable packages of integrated agronomic practices is essential for agricultural sustainability.


2021 ◽  
Vol 797 (1) ◽  
pp. 012002
Author(s):  
A Isdianto ◽  
O M Luthfi ◽  
M A Asadi ◽  
M F Haykal ◽  
N Harahab ◽  
...  

Symbiosis ◽  
2021 ◽  
Author(s):  
Dipanti Chourasiya ◽  
Manju M. Gupta ◽  
Sumit Sahni ◽  
Fritz Oehl ◽  
Richa Agnihotri ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 124
Author(s):  
Xue Fan ◽  
Xingming Hao ◽  
Haichao Hao ◽  
Jingjing Zhang ◽  
Yuanhang Li

The ecosystems in the arid inland areas of Central Asia are fragile and severely degraded. Understanding and assessing ecosystem resilience is a challenge facing ecosystems. Based on the net primary productivity (NPP) data estimated by the CASA model, this study conducted a quantitative analysis of the ecosystem’s resilience and comprehensively reflected its resilience from multiple dimensions. Furthermore, a comprehensive resilience index was constructed. The result showed that plain oasis’s ecosystem resilience is the highest, followed by deserts and mountainous areas. From the perspective of vegetation types, the highest resilience is artificial vegetation and the lowest is forest. In warm deserts, the resilience is higher in shrubs and meadows and lower in grassland vegetation. High coverage and biomass are not the same as the strong adaptability of the ecosystem. Moderate and slightly inelastic areas mainly dominate the ecosystem resilience of the study area. The new method is easy to use. The evaluation result is reliable. It can quantitatively analyze the resilience latitude and recovery rate, a beneficial improvement to the current ecosystem resilience evaluation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


Sign in / Sign up

Export Citation Format

Share Document