Exemplar Abstract for Streptococcus rattus (sic) Coykendall 1977 (Approved Lists 1980) and Streptococcus ratti corrig. Coykendall 1977 (Approved Lists 1980).

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

Author(s):  
Mouth cavity Microfora. ◽  
Teniola Temitayo Mary

The aim of the study is to evaluate and compare the antibacterial activity of ethanolic stem extract of (Wild African nutmeg) Pycnanthus angolensis (Welw.) and some commercially available toothpaste against bacteria isolated from the hidden resident mouth cavity microfora. Bacteria were isolated from swabs of apparently healthy individuals and were identified using Staining procedure biochemical tests and the use of Bergey’s manual of bacteria identification  The assay for antibacterial activity of Pycnanthus angolensis stem bark extract and the four toothpastes were determined using agar well diffusion method. The Gram positive bacteria isolated were Streptococcus sangus, Streptococcus ratti, Stomatococcus mucilaginous., Peptostreptococcus  sp., and Streptococcus mutans and the Gram negative bacteria were Veillonella atypical, Veillonella parvula, Veillonella dispar and Acidiaminococcus sp. Oral B toothpaste showed maximum efficacy of inhibition with inhibition zone diameter as wide as 20 mm at 100 mg/ml. Percentage frequency distribution of antibacterial activity of conventional toothpaste (Close-up) against hidden resident mouth cavity microfora depicts Acidaminococcus sp.13%, Veillonella parvula (10%), Veillonella dispar (12%), Peptostreptococcus  sp.(12%), Stomatococcus mucilaginous.(9%), Streptococcus ratti (13%), Veillonella atypical (11%), Streptococcus sangus (9%) and Streptococcus mutans (11%), Percentage frequency distribution of antibacterial activity of conventional toothpaste (Oral B toothpaste) against hidden resident mouth cavity microfora reveals Acidaminococcus sp.(11%,) Veillonella dispar (11%), Veillonella parvula (10%), Peptostreptococcus sp. (12%), Stomatococcus mucilaginous.(15%), Streptococcus ratti (11%), Veillonella atypical (8%), Streptococcus sangus (10%),  and Streptococcus mutans (12%), Percentage frequency distribution  of antibacterial activity of conventional toothpaste (MyMy toothpaste) against hidden resident mouth cavity microfora depicts Acidaminococcus sp.(12%), Veillonella dispar (9%), Veillonella parvula (8%), Peptostreptococcus sp.(10%), Stomatococcus mucilaginous.(16%), Streptococcus ratti (9%), Veillonella atypical (15%),Streptococcus sangus (9%) and Streptococcus mutans (12%), Percentage frequency distribution of antibacterial activity of conventional toothpaste (Olive toothpaste) against hidden resident mouth cavity microfora shows Acidaminococcus sp.(9%), Veillonella dispar (10%), Veillonella parvula (10%), Peptostreptococcus sp.(12%), Stomatococcus mucilaginous.(13%), Streptococcus ratti (10%) ,Veillonella atypical (17%), Streptococcus sangus (7%),  and Streptococcus mutans (12%). Pycnanthus Angolensis stem bark extract inhibited the growth of the oral bacterial isolates with of zones of inhibition diameter ranging from 6 mm to 17 mm at a concentration of 100mg/ml. Secondary metabolite (Phytochemical) screening shows the presence of flavonoids, tannins, saponins, alkaloids, reducing sugars, steroid, phenol, terpenoid, pyrrolozidine alkaloid, glycoside and cardiac glycoside with glycoside and terpenoid most present. However, anthraquinones and volatile oil were absent. With menial antibacterial activity, P. angolensis can be use in the formulation of herbal toothpaste. It should be advocated that Pycnanthus angolensis should be added to our convention toothpaste to improve the functional ingredient of the toothpaste and Plant-based traditional knowledge has become a recognized tool in search for new sources of drugs. It is clear that the use of these herbal plants can offer a platform for further research.



1980 ◽  
Vol 30 (3) ◽  
pp. 759-765
Author(s):  
T A Kral ◽  
L Daneo-Moore

Cells of 30 different strains of oral streptococci were grown in a chemically defined medium supplemented with [14C]glycerol to determine their ability to incorporate the labeled glycerol. Of the five species tested, only two, the rat-type strains (Streptococcus rattus) and strains isolated from wild rats (Streptococcus ferus), were able to incorporate the nonfermentable substrate, glycerol. For those strains capable of incorporating glycerol, the amount incorporated ranged from 0.15 to 0.43% of the cellular dry weight and followed simple saturation kinetics. The amount of glycerol incorporated depended solely on the concentration of glycerol in the growth medium. As a result, cultures exposed to low concentrations of glycerol ceased incorporation of the labeled glycerol before cessation of exponential growth.



2004 ◽  
Vol 70 (3) ◽  
pp. 1321-1327 ◽  
Author(s):  
Ann Griswold ◽  
Yi-Ywan M. Chen ◽  
Jennifer A. Snyder ◽  
Robert A. Burne

ABSTRACT The arginine deiminase system (ADS) is of critical importance in oral biofilm pH homeostasis and microbial ecology. The ADS consists of three enzymes. Arginine is hydrolyzed by AD (ArcA) to generate citrulline and ammonia. Citrulline is then converted to ornithine and carbamoylphosphate via ornithine carbamoyltransferase (ArcB). Finally, carbamate kinase (ArcC) transfers a phosphate from carbamoylphosphate to ADP, yielding ATP. Ammonia production from this pathway protects bacteria from lethal acidification, and ATP production provides a source of energy for the cells. The purpose of this study was to initiate a characterization of the arc operon of Streptococcus rattus, the least cariogenic and sole ADS-positive member of the mutans streptococci. Using an arcB gene fragment obtained by degenerate PCRs, the FA-1 arc operon was identified in subgenomic DNA libraries and sequence analysis was performed. Results showed that the genes encoding the AD pathway in S. rattus FA-1 are organized as an arcABCDT-adiR operon gene cluster, including the enzymes of the pathway, an arginine-ornithine antiporter (ArcD) and a putative regulatory protein (AdiR). The arcA transcriptional start site was identified by primer extension, and a σ70-like promoter was mapped 5′ to arcA. Reverse transcriptase PCR was used to establish that arcABCDT could be cotranscribed. Reporter gene fusions and AD assays demonstrated that the operon is regulated by substrate induction and catabolite repression, the latter apparently through a CcpA-dependent pathway.



1989 ◽  
Vol 271 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Fusao Ota ◽  
Hideaki Nagamune ◽  
Yasuyuki Akiyama ◽  
Hirohisa Kato ◽  
Yasuhiko Yasuoka ◽  
...  


1995 ◽  
Vol 282 (4) ◽  
pp. 343-352 ◽  
Author(s):  
Fusao Ota ◽  
Hirohisa Kato ◽  
Katsuhiko Hirota ◽  
Susumu Imai ◽  
Hiroyuki Ishikawa ◽  
...  


2009 ◽  
Vol 9 (12) ◽  
pp. 727 ◽  
Author(s):  
Bernard Dixon
Keyword(s):  


Author(s):  
Noriko Shinozaki-Kuwahara ◽  
Kazuko Takada ◽  
Masatomo Hirasawa

Three Gram-positive, catalase-negative, coccus-shaped organisms were isolated from the oral cavities of bears. The isolates were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequencing studies confirmed that the organisms were members of the genus Streptococcus, but they did not correspond to any recognized species of the genus. The nearest phylogenetic relative of the new isolates was Streptococcus ratti ATCC 19645T (98.6 %), however, DNA–DNA hybridization analysis showed that the isolates displayed less than 15 % DNA–DNA relatedness with the type strain of S. ratti. Colonies of the novel strains grown on mitis salivarius agar showed an extracellular polysaccharide-producing colony morphology. Based on phenotypic and phylogenetic evidence, it is proposed that the novel isolates are classified in the genus Streptococcus as Streptococcus ursoris sp. nov. The type strain of S. ursoris is NUM 1615T (=JCM 16316T=DSM 22768T).



1990 ◽  
Vol 24 (3) ◽  
pp. 189-197 ◽  
Author(s):  
N. Psarros ◽  
U. Feige ◽  
H. Duschner
Keyword(s):  


1998 ◽  
Vol 44 (11) ◽  
pp. 1078-1085 ◽  
Author(s):  
Timothy M Curran ◽  
Yousheng Ma ◽  
Glen C Rutherford ◽  
Robert E Marquis

The arginine deiminase system in oral streptococci is highly regulated. It requires induction and is repressed by catabolites such as glucose or by aeration. A comparative study of regulation of the system in Streptococcus gordonii ATCC 10558, Streptococcus rattus FA-1, and Streptococcus sanguis NCTC 10904 showed an increase in activity of the system in S. sanguis of some 1467-fold associated with induction-derepression of cells previously uninduced-repressed. The activity of the system was assayed in terms of levels of arginine deiminase, the signature enzyme of the system, in permeabilized cells. Increases in enzyme levels associated with induction-derepression were less for the other two organisms, mainly because of less severe repression, especially for S. rattus FA-1, which was the least sensitive to catabolite repression or aeration. Regulation of the arginine deiminase system involving induction and catabolite repression was demonstrated also with monoorganism biofilms composed of cells of S. sanguis adherent to glass slides. Fully uninduced-repressed cells from suspension cultures or biofilms were compromised in their abilities to catabolize arginine to protect themselves against acid damage. However, it was found that the system can be rapidly turned on or turned off, although induction-derepression did appear to require cell growth. Still, the system could respond rapidly to the availability of arginine to reestablish high capacity for alkali production.Key words: arginine deiminase, oral streptococci, induction-derepression, acid damage, biofilms.



Sign in / Sign up

Export Citation Format

Share Document