Expression ofhairygene is induced by juvenile hormone in tissue-dependent manner

2016 ◽  
Author(s):  
Toru Togawa
2010 ◽  
Vol 277 (1699) ◽  
pp. 3461-3467 ◽  
Author(s):  
Elizabeth A. Tibbetts ◽  
Maral Banan

Life-history trade-offs are often hormonally mediated. Here, we provide a comparative perspective on the endocrine basis of life-history trade-offs by examining the invertebrate hormone juvenile hormone (JH). JH is often associated with benefits, including increased dominance and reproductive success. We tested whether JH reduced survival of Polistes dominulus wasps and whether this survival cost was influenced by factors such as advertised quality, food availability, caste and body size. Overall, JH reduced individual survival. Among fed and unfed queens, JH reduced survival in a dose-dependent manner. Among workers, JH had a stronger effect on survival of fed workers than unfed workers. Unfed workers died quickly and body size was the best predictor of survival. Surprisingly, queens and workers treated with JH survived longer when they had signals advertising high quality than when they had signals advertising low quality. The relationship between advertised quality and ability to withstand high levels of JH suggests that there are differential physiological costs associated with ornament elaboration that could play a role in maintaining signal accuracy over evolutionary time. Overall, the convergence of endocrine-mediated costs across diverse systems suggests that endocrine-mediated trade-offs may be an adaptive way to optimize resource allocation rather than a non-adaptive constraint specific to a particular hormone.


1979 ◽  
Vol 57 (4) ◽  
pp. 838-845 ◽  
Author(s):  
H. S. Injeyan ◽  
S. S. Tobe ◽  
E. Rapport

Exogenous juvenile hormone (JH) application to Schistocerca gregaria eggs interfered with normal embryogenesis in a dose- and age-dependent manner. Embryos treated between 3 to 9 days postoviposition were inhibited at (1) blastokinesis; (2) postblastokinesis; (3) as vermiform larvae; or (4) as first-instar hoppers unable to shed their provisional entitle completely. The development of 3- to 5-day-old embryos was inhibited at blastokinesis when the embryos were treated with 1 μg JH but not with 0.1 μg JH. However, sensitivity increased with age, so that 8-to 9-day-old embryos were unable to shed the provisional cuticle when treated with as low as 0.01 μg JH. Treatment of embryos later than 10 days after oviposition did not disrupt embryogenesis and did not result in postembryonic aberrations at any stage in the life cycle. Furthermore, exogenous JH treatment of developing embryos did not enhance solitarization of S. gregaria.Disruption of embryogenesis was accompanied by an increase in brown coloration of the embryos. Microscopic examination revealed an interference with the normal development of the provisional cuticle.


2004 ◽  
Vol 279 (19) ◽  
pp. 19634-19642 ◽  
Author(s):  
Damodar R. Kethidi ◽  
Srini C. Perera ◽  
S. Zheng ◽  
Qi-Li Feng ◽  
Peter Krell ◽  
...  

Using a differential display of mRNA technique we discovered that the juvenile hormone (JH) esterase gene (Cfjhe) fromChoristoneura fumiferanais directly induced by juvenile hormone I (JH I), and the JH I induction is suppressed by 20-hydroxyecdysone (20E). To study the mechanism of action of these two hormones in the regulation of expression of this gene, we cloned the 1270-bp promoter region of the Cfjhe gene and identified a 30-bp region that is located between –604 and –574 and is sufficient to support both JH I induction and 20E suppression. This 30-bp region contains two conserved hormone response element half-sites separated by a 4-nucleotide spacer similar to the direct repeat 4 element and is designated as a putative juvenile hormone response element (JHRE). In CF-203 cells, a luciferase reporter placed under the control of JHRE and a minimal promoter was induced by JH I in a dose- and time-dependent manner. Moreover, 20E suppressed this JH I-induced luciferase activity in a dose- and time-dependent manner. Nuclear proteins isolated from JH I-treated CF-203 cells bound to JHRE and the binding was competed by a 100-fold excess of the cold probe but not by 100-fold excess of double-stranded oligonucleotides of unrelated sequence. JH I induced/modified nuclear proteins prior to their binding to JHRE and 20E suppressed this JH I induction/modification. These results suggest that the 30-bp JHRE identified in the Cfjhe gene promoter is sufficient to support JH induction and 20E suppression of the Cfjhe gene.


1986 ◽  
Vol 120 (1) ◽  
pp. 41-58 ◽  
Author(s):  
D. B. Rountree ◽  
W. E. Bollenbacher

Pupal development is elicited early in the last larval instar of the tobacco hornworm, Manduca sexta (Johannson), by a precise temporal and quantitative increase in the haemolymph titre of 20-hydroxyecdysone. This increase in the titre is referred to as the pupal commitment peak, and it occurs once the titre of juvenile hormone (JH) has dropped. If the haemolymph titre of JH remains elevated at this time due to topical application of the hormone or of its analogue ZR512, commitment is delayed or inhibited in a dose-dependent manner. This delay or inhibition is due to the curtailment of the commitment peak in the ecdysteroid titre, which results from a failure of the prothoracic glands (PG) to increase the synthesis/secretion of the premoulting hormone, ecdysone. Since the PG from ZR512- and JH 1-treated larvae are capable of being activated in vitro by the prothoracicotropic hormone (PTTH), the effect of JH on the PG does not involve suppression of gland sensitivity to PTTH. The locus of the JH effect was determined to be the brain-retrocerebral complexes (Br-CC-CA), on the basis of experiments which tested the effect of implanted Br-CC-CA from pre-commitment larvae treated with JH on the occurrence of pupal commitment in head-ligated larval hosts. The implanted, JH-treated Br-CC-CA exhibited a delayed release of PTTH, and the effect was at concentrations of JH that were physiological. These results argue that JH functions to control the time during the last larval instar when pupal commitment occurs by dictating when PTTH will undergo gated release.


Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Nasser M. Al-Daghri ◽  
Khalid M. Alkharfy ◽  
Nasiruddin Khan ◽  
Hanan A. Alfawaz ◽  
Abdulrahman S. Al-Ajlan ◽  
...  

The aim of our study was to evaluate the effects of vitamin D supplementation on circulating levels of magnesium and selenium in patients with type 2 diabetes mellitus (T2DM). A total of 126 adult Saudi patients (55 men and 71 women, mean age 53.6 ± 10.7 years) with controlled T2DM were randomly recruited for the study. All subjects were given vitamin D3 tablets (2000 IU/day) for six months. Follow-up mean concentrations of serum 25-hydroxyvitamin D [25-(OH) vitamin D] significantly increased in both men (34.1 ± 12.4 to 57.8 ± 17.0 nmol/L) and women (35.7 ± 13.5 to 60.1 ± 18.5 nmol/L, p < 0.001), while levels of parathyroid hormone (PTH) decreased significantly in both men (1.6 ± 0.17 to 0.96 ± 0.10 pmol/L, p = 0.003) and women (1.6 ± 0.17 to 1.0 ± 0.14 pmol/L, p = 0.02). In addition, there was a significant increase in serum levels of selenium and magnesium in men and women (p-values < 0.001 and 0.04, respectively) after follow-up. In women, a significant correlation was observed between delta change (variables at six months-variable at baseline) of serum magnesium versus high-density lipoprotein (HDL)-cholesterol (r = 0.36, p = 0.006) and fasting glucose (r = - 0.33, p = 0.01). In men, there was a significant correlation between serum selenium and triglycerides (r = 0.32, p = 0.04). Vitamin D supplementation improves serum concentrations of magnesium and selenium in a gender-dependent manner, which in turn could affect several cardiometabolic parameters such as glucose and lipids.


VASA ◽  
2014 ◽  
Vol 43 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Weibin Huang ◽  
Weiwei Qin ◽  
Lei Lv ◽  
Haoyv Deng ◽  
Hao Zhang ◽  
...  

Background: Duffy antigen / receptor for chemokines (DARC) possesses high affinity for several chemokine subgroups of CC and CXC. Although DARC has been shown to play a role in many inflammatory diseases, its effect on chronic venous disease (CVD) remains unidentified. We explored whether the expression of DARC in skin tissue was activated under venous hypertension as well as the relationships between DARC and inflammation. Materials and methods: The inflammation in a rat model of venous hypertension caused by a femoral arterial-venous fistula (AVF) was studied. At specified intervals the pressure in the femoral veins was recorded within 42 days. Hindlimb skin specimens were harvested at different time points. The expressions of DARC, interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) in skin tissue were examined. Mononuclear cells infiltrated in skin tissue were detected. Results: Femoral venous pressures in AVF groups increased significantly at different time points (P < 0.01). DARC was expressed in skin tissue and its expression level increased significantly in AVF groups from the 7nd day on and was enhanced in a time-dependent manner within 42 days (P < 0.05). Meanwhile, both MCP-1 and IL-8 had higher levels, accompanied by increased mononuclear cells infiltrating into skin tissue (P < 0.05). Conclusions: A rat AVF model which can maintain venous hypertension for at least 42 days is competent for researching the pathogenesis of CVD. DARC, which plays a role in the inflammation of skin tissue under venous hypertension, may become a new molecular target for diagnosis and treatment of CVD at a very early stage.


Sign in / Sign up

Export Citation Format

Share Document