scholarly journals TDSNN: From Deep Neural Networks to Deep Spike Neural Networks with Temporal-Coding

Author(s):  
Lei Zhang ◽  
Shengyuan Zhou ◽  
Tian Zhi ◽  
Zidong Du ◽  
Yunji Chen

Continuous-valued deep convolutional networks (DNNs) can be converted into accurate rate-coding based spike neural networks (SNNs). However, the substantial computational and energy costs, which is caused by multiple spikes, limit their use in mobile and embedded applications. And recent works have shown that the newly emerged temporal-coding based SNNs converted from DNNs can reduce the computational load effectively. In this paper, we propose a novel method to convert DNNs to temporal-coding SNNs, called TDSNN. Combined with the characteristic of the leaky integrate-andfire (LIF) neural model, we put forward a new coding principle Reverse Coding and design a novel Ticking Neuron mechanism. According to our evaluation, our proposed method achieves 42% total operations reduction on average in large networks comparing with DNNs with no more than 0.5% accuracy loss. The evaluation shows that TDSNN may prove to be one of the key enablers to make the adoption of SNNs widespread.

Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1365
Author(s):  
Bogdan Muşat ◽  
Răzvan Andonie

Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


Author(s):  
Kaiyi Peng ◽  
Bin Fang ◽  
Mingliang Zhou

Liver lesion segmentation from abdomen computed tomography (CT) with deep neural networks remains challenging due to the small volume and the unclear boundary. To effectively tackle these problems, in this paper, we propose a cascaded deeply supervised convolutional networks (CDS-Net). The cascaded deep supervision (CDS) mechanism uses auxiliary losses to construct a cascaded segmentation method in a single network, focusing the network attention on pixels that are more difficult to classify, so that the network can segment the lesion more effectively. CDS mechanism can be easily integrated into standard CNN models and it helps to increase the model sensitivity and prediction accuracy. Based on CDS mechanism, we propose a cascaded deep supervised ResUNet, which is an end-to-end liver lesion segmentation network. We conduct experiments on LiTS and 3DIRCADb dataset. Our method has achieved competitive results compared with other state-of-the-art ones.


2021 ◽  
Author(s):  
Alfonso Rojas-Domínguez ◽  
Ivvan Valdez ◽  
Manuel Ornelas-Rodríguez ◽  
Martín Carpio

Abstract Fostered by technological and theoretical developments, deep neural networks have achieved great success in many applications, but their training by means of mini-batch stochastic gradient descent (SGD) can be very costly due to the possibly tens of millions of parameters to be optimized and the large amounts of training examples that must be processed. Said computational cost is exacerbated by the inefficiency of the uniform sampling method typically used by SGD to form the training mini-batches: since not all training examples are equally relevant for training, sampling these under a uniform distribution is far from optimal. A better strategy is to form the mini-batches by sampling the training examples under a distribution where the probability of being selected is proportional to the relevance of each individual example. This can be achieved through Importance Sampling (IS), which also achieves the minimization of the gradients’ variance w.r.t. the network parameters, further improving convergence. In this paper, an IS-based adaptive sampling method is studied that exploits side information to construct the required probability distribution. Said method is modified to enable its application to deep neural networks, and the improved method is dubbed Regularized Adaptive Sampling (RAS). Experimental comparison (using deep convolutional networks for classification of the MNIST and CIFAR-10 datasets) of RAS against SGD and against another sampling method in the state of the art, shows that RAS achieves relative improvements of the training process, without incurring significant overhead or affecting the accuracy of the networks.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianyu Wang ◽  
Shi-Yuan Ma ◽  
Logan G. Wright ◽  
Tatsuhiro Onodera ◽  
Brian C. Richard ◽  
...  

AbstractDeep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10−19 J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies.


Author(s):  
Maria Refinetti ◽  
Stéphane d'Ascoli ◽  
Ruben Ohana ◽  
Sebastian Goldt

Abstract Direct Feedback Alignment (DFA) is emerging as an eficient and biologically plausible alternative to backpropagation for training deep neural networks. Despite relying on random feedback weights for the backward pass, DFA successfully trains state-of-the-art models such as Transformers. On the other hand, it notoriously fails to train convolutional networks. An understanding of the inner workings of DFA to explain these diverging results remains elusive. Here, we propose a theory of feedback alignment algorithms. We ffrst show that learning in shallow networks proceeds in two steps: an alignment phase, where the model adapts its weights to align the approximate gradient with the true gradient of the loss function, is followed by a memorisation phase, where the model focuses on fftting the data. This two-step process has a degeneracy breaking eflect: out of all the low-loss solutions in the landscape, a network trained with DFA naturally converges to the solution which maximises gradient alignment. We also identify a key quantity underlying alignment in deep linear networks: the conditioning of the alignment matrices. The latter enables a detailed understanding of the impact of data structure on alignment, and suggests a simple explanation for the well-known failure of DFA to train convolutional neural networks. Numerical experiments on MNIST and CIFAR10 clearly demonstrate degeneracy breaking in deep non-linear networks and show that the align-then-memorize process occurs sequentially from the bottom layers of the network to the top.


2019 ◽  
Vol 9 (8) ◽  
pp. 1716
Author(s):  
Jaehui Park

Semantic role labeling is an effective approach to understand underlying meanings associated with word relationships in natural language sentences. Recent studies using deep neural networks, specifically, recurrent neural networks, have significantly improved traditional shallow models. However, due to the limitation of recurrent updates, they require long training time over a large data set. Moreover, they could not capture the hierarchical structures of languages. We propose a novel deep neural model, providing selective connections among attentive representations, which remove the recurrent updates, for semantic role labeling. Experimental results show that our model performs better in accuracy compared to the state-of-the-art studies. Our model achieves 86.6 F1 scores and 83.6 F1 scores on the CoNLL 2005 and CoNLL 2012 shared tasks, respectively. The accuracy gains are improved by capturing the hierarchical information using the connection module. Moreover, we show that our model can be parallelized to avoid the repetitive updates of the model. As a result, our model reduces the training time by 62 percentages from the baseline.


Sign in / Sign up

Export Citation Format

Share Document