scholarly journals Abduction-Based Explanations for Machine Learning Models

Author(s):  
Alexey Ignatiev ◽  
Nina Narodytska ◽  
Joao Marques-Silva

The growing range of applications of Machine Learning (ML) in a multitude of settings motivates the ability of computing small explanations for predictions made. Small explanations are generally accepted as easier for human decision makers to understand. Most earlier work on computing explanations is based on heuristic approaches, providing no guarantees of quality, in terms of how close such solutions are from cardinality- or subset-minimal explanations. This paper develops a constraint-agnostic solution for computing explanations for any ML model. The proposed solution exploits abductive reasoning, and imposes the requirement that the ML model can be represented as sets of constraints using some target constraint reasoning system for which the decision problem can be answered with some oracle. The experimental results, obtained on well-known datasets, validate the scalability of the proposed approach as well as the quality of the computed solutions.

Author(s):  
Or Biran ◽  
Kathleen McKeown

Human decision makers in many domains can make use of predictions made by machine learning models in their decision making process, but the usability of these predictions is limited if the human is unable to justify his or her trust in the prediction. We propose a novel approach to producing justifications that is geared towards users without machine learning expertise, focusing on domain knowledge and on human reasoning, and utilizing natural language generation. Through a task-based experiment, we show that our approach significantly helps humans to correctly decide whether or not predictions are accurate, and significantly increases their satisfaction with the justification.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mirjam Pot ◽  
Nathalie Kieusseyan ◽  
Barbara Prainsack

AbstractThe application of machine learning (ML) technologies in medicine generally but also in radiology more specifically is hoped to improve clinical processes and the provision of healthcare. A central motivation in this regard is to advance patient treatment by reducing human error and increasing the accuracy of prognosis, diagnosis and therapy decisions. There is, however, also increasing awareness about bias in ML technologies and its potentially harmful consequences. Biases refer to systematic distortions of datasets, algorithms, or human decision making. These systematic distortions are understood to have negative effects on the quality of an outcome in terms of accuracy, fairness, or transparency. But biases are not only a technical problem that requires a technical solution. Because they often also have a social dimension, the ‘distorted’ outcomes they yield often have implications for equity. This paper assesses different types of biases that can emerge within applications of ML in radiology, and discusses in what cases such biases are problematic. Drawing upon theories of equity in healthcare, we argue that while some biases are harmful and should be acted upon, others might be unproblematic and even desirable—exactly because they can contribute to overcome inequities.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pooya Tabesh

Purpose While it is evident that the introduction of machine learning and the availability of big data have revolutionized various organizational operations and processes, existing academic and practitioner research within decision process literature has mostly ignored the nuances of these influences on human decision-making. Building on existing research in this area, this paper aims to define these concepts from a decision-making perspective and elaborates on the influences of these emerging technologies on human analytical and intuitive decision-making processes. Design/methodology/approach The authors first provide a holistic understanding of important drivers of digital transformation. The authors then conceptualize the impact that analytics tools built on artificial intelligence (AI) and big data have on intuitive and analytical human decision processes in organizations. Findings The authors discuss similarities and differences between machine learning and two human decision processes, namely, analysis and intuition. While it is difficult to jump to any conclusions about the future of machine learning, human decision-makers seem to continue to monopolize the majority of intuitive decision tasks, which will help them keep the upper hand (vis-à-vis machines), at least in the near future. Research limitations/implications The work contributes to research on rational (analytical) and intuitive processes of decision-making at the individual, group and organization levels by theorizing about the way these processes are influenced by advanced AI algorithms such as machine learning. Practical implications Decisions are building blocks of organizational success. Therefore, a better understanding of the way human decision processes can be impacted by advanced technologies will prepare managers to better use these technologies and make better decisions. By clarifying the boundaries/overlaps among concepts such as AI, machine learning and big data, the authors contribute to their successful adoption by business practitioners. Social implications The work suggests that human decision-makers will not be replaced by machines if they continue to invest in what they do best: critical thinking, intuitive analysis and creative problem-solving. Originality/value The work elaborates on important drivers of digital transformation from a decision-making perspective and discusses their practical implications for managers.


Author(s):  
Noé Sturm ◽  
Jiangming Sun ◽  
Yves Vandriessche ◽  
Andreas Mayr ◽  
Günter Klambauer ◽  
...  

<div>This article describes an application of high-throughput fingerprints (HTSFP) built upon industrial data accumulated over the years. </div><div>The fingerprint was used to build machine learning models (multi-task deep learning + SVM) for compound activity predictions towards a panel of 131 targets. </div><div>Quality of the predictions and the scaffold hopping potential of the HTSFP were systematically compared to traditional structural descriptors ECFP. </div><div><br></div>


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Friederike Wall

Coordination among decision-makers of an organization, each responsible for a certain partition of an overall decision-problem, is of crucial relevance with respect to the overall performance obtained. Among the challenges of coordination in distributed decision-making systems (DDMS) is to understand how environmental conditions like, for example, the complexity of the decision-problem to be solved, the problem’s predictability and its dynamics shape the adaptation of coordination mechanisms. These challenges apply to DDMS resided by human decision-makers like firms as well as to systems of artificial agents as studied in the domain of multiagent systems (MAS). It is well known that coordination for increasing decision-problems and, accordingly, growing organizations is in a particular tension between shaping the search for new solutions and setting appropriate constraints to deal with increasing size and intraorganizational complexity. Against this background, the paper studies the adaptation of coordination in the course of growing decision-making organizations. For this, an agent-based simulation model based on the framework of NK fitness landscapes is employed. The study controls for different levels of complexity of the overall decision-problem, different strategies of search for new solutions, and different levels of cost of effort to implement new solutions. The results suggest that, with respect to the emerging coordination mode, complexity subtly interferes with the search strategy employed and cost of effort. In particular, results support the conjecture that increasing complexity leads to more hierarchical coordination. However, the search strategy shapes the predominance of hierarchy in favor of granting more autonomy to decentralized decision-makers. Moreover, the study reveals that the cost of effort for implementing new solutions in conjunction with the search strategy may remarkably affect the emerging form of coordination. This could explain differences in prevailing coordination modes across different branches or technologies or could explain the emergence of contextually inferior modes of coordination.


Author(s):  
Jože M. Rožanec ◽  
Elena Trajkova ◽  
Jinzhi Lu ◽  
Nikolaos Sarantinoudis ◽  
Georgios Arampatzis ◽  
...  

Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predictive machine learning models, enables to provide equipment state monitoring services and to generate decision-making for equipment operations. In this paper, we propose two machine learning models: 1) to forecast the amount of pentane (C5) content in the final product mixture; 2) to identify if C5 content exceeds the specification thresholds for the final product quality. We validate our approach by using a use case from a real-world refinery. In addition, we develop a visualization to assess which features are considered most important during feature selection, and later by the machine learning models. Finally, we provide insights on the sensor values in the dataset, which help to identify the operational conditions for using such machine learning models.


2021 ◽  
Vol 11 (24) ◽  
pp. 11790
Author(s):  
Jože Martin Rožanec ◽  
Elena Trajkova ◽  
Jinzhi Lu ◽  
Nikolaos Sarantinoudis ◽  
George Arampatzis ◽  
...  

Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predictive machine learning models, enables the provision of equipment state monitoring services and the generation of decision-making for equipment operations. In this paper, we propose two machine learning models: (1) to forecast the amount of pentane (C5) content in the final product mixture; (2) to identify if C5 content exceeds the specification thresholds for the final product quality. We validate our approach using a use case from a real-world refinery. In addition, we develop a visualization to assess which features are considered most important during feature selection, and later by the machine learning models. Finally, we provide insights on the sensor values in the dataset, which help to identify the operational conditions for using such machine learning models.


Author(s):  
Mahip M. Bartere ◽  
Sneha Bohra ◽  
Prashant Adakane ◽  
B. Santhosh Kumar

Data security is one of the most important aspects in today's scenario. Whenever we send our data from source to destination, data protection is one of the prime components. With the help of data hiding and data extraction techniques, we are able to provide the solution of different types of problems whenever we transfer our data. Steganography is a process where we can hide our data and maintain the quality of the image. At the same time, we think about data alteration. With the help of stegtanalysis method, we reverse engineer and extract the original data. In this chapter, data hiding and data extraction techniques are explained in the combination of machine learning architecture. The combination of steganography and steganalysis along with machine learning is used to identify protected data using different techniques.


Sign in / Sign up

Export Citation Format

Share Document