scholarly journals Validation of Growing Knowledge Graphs by Abductive Text Evidences

Author(s):  
Jianfeng Du ◽  
Jeff Z. Pan ◽  
Sylvia Wang ◽  
Kunxun Qi ◽  
Yuming Shen ◽  
...  

This paper proposes a validation mechanism for newly added triples in a growing knowledge graph. Given a logical theory, a knowledge graph, a text corpus, and a new triple to be validated, this mechanism computes a sorted list of explanations for the new triple to facilitate the validation of it, where an explanation, called an abductive text evidence, is a set of pairs of the form (triple, window) where appending the set of triples on the left to the knowledge graph enforces entailment of the new triple under the logical theory, while every sentence window on the right which is contained in the text corpus explains to some degree why the triple on the left is true. From the angle of practice, a special class of abductive text evidences called TEP-based abductive text evidence is proposed, which is constructed from explanation patterns seen before in the knowledge graph. Accordingly, a method for computing the complete set of TEP-based abductive text evidences is proposed. Moreover, a method for sorting abductive text evidences based on distantly supervised learning is proposed. To evaluate the proposed validation mechanism, four knowledge graphs with logical theories are constructed from the four great classical masterpieces of Chinese literature. Experimental results on these datasets demonstrate the efficiency and effectiveness of the proposed mechanism.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Rita T. Sousa ◽  
Sara Silva ◽  
Catia Pesquita

Abstract Background In recent years, biomedical ontologies have become important for describing existing biological knowledge in the form of knowledge graphs. Data mining approaches that work with knowledge graphs have been proposed, but they are based on vector representations that do not capture the full underlying semantics. An alternative is to use machine learning approaches that explore semantic similarity. However, since ontologies can model multiple perspectives, semantic similarity computations for a given learning task need to be fine-tuned to account for this. Obtaining the best combination of semantic similarity aspects for each learning task is not trivial and typically depends on expert knowledge. Results We have developed a novel approach, evoKGsim, that applies Genetic Programming over a set of semantic similarity features, each based on a semantic aspect of the data, to obtain the best combination for a given supervised learning task. The approach was evaluated on several benchmark datasets for protein-protein interaction prediction using the Gene Ontology as the knowledge graph to support semantic similarity, and it outperformed competing strategies, including manually selected combinations of semantic aspects emulating expert knowledge. evoKGsim was also able to learn species-agnostic models with different combinations of species for training and testing, effectively addressing the limitations of predicting protein-protein interactions for species with fewer known interactions. Conclusions evoKGsim can overcome one of the limitations in knowledge graph-based semantic similarity applications: the need to expertly select which aspects should be taken into account for a given application. Applying this methodology to protein-protein interaction prediction proved successful, paving the way to broader applications.


2021 ◽  
Author(s):  
Jinzhi Liao ◽  
Xiang Zhao ◽  
Jiuyang Tang ◽  
Weixin Zeng ◽  
Zhen Tan

AbstractWith the proliferation of large-scale knowledge graphs (KGs), multi-hop knowledge graph reasoning has been a capstone that enables machines to be able to handle intelligent tasks, especially where some explicit reasoning path is appreciated for decision making. To train a KG reasoner, supervised learning-based methods suffer from false-negative issues, i.e., unseen paths during training are not to be found in prediction; in contrast, reinforcement learning (RL)-based methods do not require labeled paths, and can explore to cover many appropriate reasoning paths. In this connection, efforts have been dedicated to investigating several RL formulations for multi-hop KG reasoning. Particularly, current RL-based methods generate rewards at the very end of the reasoning process, due to which short paths of hops less than a given threshold are likely to be overlooked, and the overall performance is impaired. To address the problem, we propose , a revised RL formulation of multi-hop KG reasoning that is characterized by two novel designs—the stop signal and the worth-trying signal. The stop signal instructs the agent of RL to stay at the entity after finding the answer, preventing from hopping further even if the threshold is not reached; meanwhile, the worth-trying signal encourages the agent to try to learn some partial patterns from the paths that fail to lead to the answer. To validate the design of our model , comprehensive experiments are carried out on three benchmark knowledge graphs, and the results and analysis suggest the superiority of over state-of-the-art methods.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Suzanna Schmeelk ◽  
Lixin Tao

Many organizations, to save costs, are movinheg to t Bring Your Own Mobile Device (BYOD) model and adopting applications built by third-parties at an unprecedented rate.  Our research examines software assurance methodologies specifically focusing on security analysis coverage of the program analysis for mobile malware detection, mitigation, and prevention.  This research focuses on secure software development of Android applications by developing knowledge graphs for threats reported by the Open Web Application Security Project (OWASP).  OWASP maintains lists of the top ten security threats to web and mobile applications.  We develop knowledge graphs based on the two most recent top ten threat years and show how the knowledge graph relationships can be discovered in mobile application source code.  We analyze 200+ healthcare applications from GitHub to gain an understanding of their software assurance of their developed software for one of the OWASP top ten moble threats, the threat of “Insecure Data Storage.”  We find that many of the applications are storing personally identifying information (PII) in potentially vulnerable places leaving users exposed to higher risks for the loss of their sensitive data.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


2021 ◽  
Vol 13 (5) ◽  
pp. 124
Author(s):  
Jiseong Son ◽  
Chul-Su Lim ◽  
Hyoung-Seop Shim ◽  
Ji-Sun Kang

Despite the development of various technologies and systems using artificial intelligence (AI) to solve problems related to disasters, difficult challenges are still being encountered. Data are the foundation to solving diverse disaster problems using AI, big data analysis, and so on. Therefore, we must focus on these various data. Disaster data depend on the domain by disaster type and include heterogeneous data and lack interoperability. In particular, in the case of open data related to disasters, there are several issues, where the source and format of data are different because various data are collected by different organizations. Moreover, the vocabularies used for each domain are inconsistent. This study proposes a knowledge graph to resolve the heterogeneity among various disaster data and provide interoperability among domains. Among disaster domains, we describe the knowledge graph for flooding disasters using Korean open datasets and cross-domain knowledge graphs. Furthermore, the proposed knowledge graph is used to assist, solve, and manage disaster problems.


2021 ◽  
Vol 11 (15) ◽  
pp. 7104
Author(s):  
Xu Yang ◽  
Ziyi Huan ◽  
Yisong Zhai ◽  
Ting Lin

Nowadays, personalized recommendation based on knowledge graphs has become a hot spot for researchers due to its good recommendation effect. In this paper, we researched personalized recommendation based on knowledge graphs. First of all, we study the knowledge graphs’ construction method and complete the construction of the movie knowledge graphs. Furthermore, we use Neo4j graph database to store the movie data and vividly display it. Then, the classical translation model TransE algorithm in knowledge graph representation learning technology is studied in this paper, and we improved the algorithm through a cross-training method by using the information of the neighboring feature structures of the entities in the knowledge graph. Furthermore, the negative sampling process of TransE algorithm is improved. The experimental results show that the improved TransE model can more accurately vectorize entities and relations. Finally, this paper constructs a recommendation model by combining knowledge graphs with ranking learning and neural network. We propose the Bayesian personalized recommendation model based on knowledge graphs (KG-BPR) and the neural network recommendation model based on knowledge graphs(KG-NN). The semantic information of entities and relations in knowledge graphs is embedded into vector space by using improved TransE method, and we compare the results. The item entity vectors containing external knowledge information are integrated into the BPR model and neural network, respectively, which make up for the lack of knowledge information of the item itself. Finally, the experimental analysis is carried out on MovieLens-1M data set. The experimental results show that the two recommendation models proposed in this paper can effectively improve the accuracy, recall, F1 value and MAP value of recommendation.


Semantic Web ◽  
2020 ◽  
pp. 1-45
Author(s):  
Valentina Anita Carriero ◽  
Aldo Gangemi ◽  
Maria Letizia Mancinelli ◽  
Andrea Giovanni Nuzzolese ◽  
Valentina Presutti ◽  
...  

Ontology Design Patterns (ODPs) have become an established and recognised practice for guaranteeing good quality ontology engineering. There are several ODP repositories where ODPs are shared as well as ontology design methodologies recommending their reuse. Performing rigorous testing is recommended as well for supporting ontology maintenance and validating the resulting resource against its motivating requirements. Nevertheless, it is less than straightforward to find guidelines on how to apply such methodologies for developing domain-specific knowledge graphs. ArCo is the knowledge graph of Italian Cultural Heritage and has been developed by using eXtreme Design (XD), an ODP- and test-driven methodology. During its development, XD has been adapted to the need of the CH domain e.g. gathering requirements from an open, diverse community of consumers, a new ODP has been defined and many have been specialised to address specific CH requirements. This paper presents ArCo and describes how to apply XD to the development and validation of a CH knowledge graph, also detailing the (intellectual) process implemented for matching the encountered modelling problems to ODPs. Relevant contributions also include a novel web tool for supporting unit-testing of knowledge graphs, a rigorous evaluation of ArCo, and a discussion of methodological lessons learned during ArCo’s development.


2018 ◽  
Vol 10 (9) ◽  
pp. 3245 ◽  
Author(s):  
Tianxing Wu ◽  
Guilin Qi ◽  
Cheng Li ◽  
Meng Wang

With the continuous development of intelligent technologies, knowledge graph, the backbone of artificial intelligence, has attracted much attention from both academic and industrial communities due to its powerful capability of knowledge representation and reasoning. In recent years, knowledge graph has been widely applied in different kinds of applications, such as semantic search, question answering, knowledge management and so on. Techniques for building Chinese knowledge graphs are also developing rapidly and different Chinese knowledge graphs have been constructed to support various applications. Under the background of the “One Belt One Road (OBOR)” initiative, cooperating with the countries along OBOR on studying knowledge graph techniques and applications will greatly promote the development of artificial intelligence. At the same time, the accumulated experience of China in developing knowledge graphs is also a good reference to develop non-English knowledge graphs. In this paper, we aim to introduce the techniques of constructing Chinese knowledge graphs and their applications, as well as analyse the impact of knowledge graph on OBOR. We first describe the background of OBOR, and then introduce the concept and development history of knowledge graph and typical Chinese knowledge graphs. Afterwards, we present the details of techniques for constructing Chinese knowledge graphs, and demonstrate several applications of Chinese knowledge graphs. Finally, we list some examples to explain the potential impacts of knowledge graph on OBOR.


Sign in / Sign up

Export Citation Format

Share Document