scholarly journals Learning Personalized End-to-End Goal-Oriented Dialog

Author(s):  
Liangchen Luo ◽  
Wenhao Huang ◽  
Qi Zeng ◽  
Zaiqing Nie ◽  
Xu Sun

Most existing works on dialog systems only consider conversation content while neglecting the personality of the user the bot is interacting with, which begets several unsolved issues. In this paper, we present a personalized end-to-end model in an attempt to leverage personalization in goal-oriented dialogs. We first introduce a PROFILE MODEL which encodes user profiles into distributed embeddings and refers to conversation history from other similar users. Then a PREFERENCE MODEL captures user preferences over knowledge base entities to handle the ambiguity in user requests. The two models are combined into the PERSONALIZED MEMN2N. Experiments show that the proposed model achieves qualitative performance improvements over state-of-the-art methods. As for human evaluation, it also outperforms other approaches in terms of task completion rate and user satisfaction.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


2020 ◽  
Vol 17 (3) ◽  
pp. 849-865
Author(s):  
Zhongqin Bi ◽  
Shuming Dou ◽  
Zhe Liu ◽  
Yongbin Li

Neural network methods have been trained to satisfactorily learn user/product representations from textual reviews. A representation can be considered as a multiaspect attention weight vector. However, in several existing methods, it is assumed that the user representation remains unchanged even when the user interacts with products having diverse characteristics, which leads to inaccurate recommendations. To overcome this limitation, this paper proposes a novel model to capture the varying attention of a user for different products by using a multilayer attention framework. First, two individual hierarchical attention networks are used to encode the users and products to learn the user preferences and product characteristics from review texts. Then, we design an attention network to reflect the adaptive change in the user preferences for each aspect of the targeted product in terms of the rating and review. The results of experiments performed on three public datasets demonstrate that the proposed model notably outperforms the other state-of-the-art baselines, thereby validating the effectiveness of the proposed approach.


2020 ◽  
Vol 34 (01) ◽  
pp. 214-221 ◽  
Author(s):  
Ke Sun ◽  
Tieyun Qian ◽  
Tong Chen ◽  
Yile Liang ◽  
Quoc Viet Hung Nguyen ◽  
...  

Point-of-Interest (POI) recommendation has been a trending research topic as it generates personalized suggestions on facilities for users from a large number of candidate venues. Since users' check-in records can be viewed as a long sequence, methods based on recurrent neural networks (RNNs) have recently shown promising applicability for this task. However, existing RNN-based methods either neglect users' long-term preferences or overlook the geographical relations among recently visited POIs when modeling users' short-term preferences, thus making the recommendation results unreliable. To address the above limitations, we propose a novel method named Long- and Short-Term Preference Modeling (LSTPM) for next-POI recommendation. In particular, the proposed model consists of a nonlocal network for long-term preference modeling and a geo-dilated RNN for short-term preference learning. Extensive experiments on two real-world datasets demonstrate that our model yields significant improvements over the state-of-the-art methods.


2017 ◽  
Vol 7 (1) ◽  
pp. 1-16
Author(s):  
Madhuri A. Potey ◽  
Pradeep K. Sinha

Search engine technologies are evolving to satisfy the user's ever increasing information need; but are yet to achieve perfection especially in ranking. With the exponential growth in the available information on the internet; ranking has become vital for satisfactory search experience. User satisfaction can be ensured to some extent by personalizing the search results based on user preferences which can be explicitly stated or learned from user's search behavior. Machine learning algorithms which predict user preference from the available information related to the user are extensively experimented for personalization. Among several studies undertaken for re-ranking the documents, many focus on the user. Such approaches create user model to capture the search context and behavior. This study attempts to analyze the research trends in user model based personalization and discuss experimental results in personalized information retrieval area. The authors experimented to extend the state of the art in the specific areas of personalization.


Author(s):  
Duowei Tang ◽  
Peter Kuppens ◽  
Luc Geurts ◽  
Toon van Waterschoot

AbstractAmongst the various characteristics of a speech signal, the expression of emotion is one of the characteristics that exhibits the slowest temporal dynamics. Hence, a performant speech emotion recognition (SER) system requires a predictive model that is capable of learning sufficiently long temporal dependencies in the analysed speech signal. Therefore, in this work, we propose a novel end-to-end neural network architecture based on the concept of dilated causal convolution with context stacking. Firstly, the proposed model consists only of parallelisable layers and is hence suitable for parallel processing, while avoiding the inherent lack of parallelisability occurring with recurrent neural network (RNN) layers. Secondly, the design of a dedicated dilated causal convolution block allows the model to have a receptive field as large as the input sequence length, while maintaining a reasonably low computational cost. Thirdly, by introducing a context stacking structure, the proposed model is capable of exploiting long-term temporal dependencies hence providing an alternative to the use of RNN layers. We evaluate the proposed model in SER regression and classification tasks and provide a comparison with a state-of-the-art end-to-end SER model. Experimental results indicate that the proposed model requires only 1/3 of the number of model parameters used in the state-of-the-art model, while also significantly improving SER performance. Further experiments are reported to understand the impact of using various types of input representations (i.e. raw audio samples vs log mel-spectrograms) and to illustrate the benefits of an end-to-end approach over the use of hand-crafted audio features. Moreover, we show that the proposed model can efficiently learn intermediate embeddings preserving speech emotion information.


Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 217 ◽  
Author(s):  
Xiujuan Xiang ◽  
Guangluan Xu ◽  
Xingyu Fu ◽  
Yang Wei ◽  
Li Jin ◽  
...  

Current popular abstractive summarization is based on an attentional encoder-decoder framework. Based on the architecture, the decoder generates a summary according to the full text that often results in the decoder being interfered by some irrelevant information, thereby causing the generated summaries to suffer from low saliency. Besides, we have observed the process of people writing summaries and find that they write a summary based on the necessary information rather than the full text. Thus, in order to enhance the saliency of the abstractive summarization, we propose an attentive information extraction model. It consists of a multi-layer perceptron (MLP) gated unit that pays more attention to the important information of the source text and a similarity module to encourage high similarity between the reference summary and the important information. Before the summary decoder, the MLP and the similarity module work together to extract the important information for the decoder, thus obtaining the skeleton of the source text. This effectively reduces the interference of irrelevant information to the decoder, therefore improving the saliency of the summary. Our proposed model was tested on CNN/Daily Mail and DUC-2004 datasets, and achieved a 42.01 ROUGE-1 f-score and 33.94 ROUGE-1, recall respectively. The result outperforms the state-of-the-art abstractive model on the same dataset. In addition, by subjective human evaluation, the saliency of the generated summaries was further enhanced.


Author(s):  
Hamidreza Tahmasbi ◽  
Mehrdad Jalali ◽  
Hassan Shakeri

AbstractAn essential problem in real-world recommender systems is that user preferences are not static and users are likely to change their preferences over time. Recent studies have shown that the modelling and capturing the dynamics of user preferences lead to significant improvements on recommendation accuracy and, consequently, user satisfaction. In this paper, we develop a framework to capture user preference dynamics in a personalized manner based on the fact that changes in user preferences can vary individually. We also consider the plausible assumption that older user activities should have less influence on a user’s current preferences. We introduce an individual time decay factor for each user according to the rate of his preference dynamics to weigh the past user preferences and decrease their importance gradually. We exploit users’ demographics as well as the extracted similarities among users over time, aiming to enhance the prior knowledge about user preference dynamics, in addition to the past weighted user preferences in a developed coupled tensor factorization technique to provide top-K recommendations. The experimental results on the two real social media datasets—Last.fm and Movielens—indicate that our proposed model is better and more robust than other competitive methods in terms of recommendation accuracy and is more capable of coping with problems such as cold-start and data sparsity.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2873
Author(s):  
Anusha Khan ◽  
Allah Bux Sargano ◽  
Zulfiqar Habib

Video super-resolution (VSR) aims at generating high-resolution (HR) video frames with plausible and temporally consistent details using their low-resolution (LR) counterparts, and neighboring frames. The key challenge for VSR lies in the effective exploitation of intra-frame spatial relation and temporal dependency between consecutive frames. Many existing techniques utilize spatial and temporal information separately and compensate motion via alignment. These methods cannot fully exploit the spatio-temporal information that significantly affects the quality of resultant HR videos. In this work, a novel deformable spatio-temporal convolutional residual network (DSTnet) is proposed to overcome the issues of separate motion estimation and compensation methods for VSR. The proposed framework consists of 3D convolutional residual blocks decomposed into spatial and temporal (2+1) D streams. This decomposition can simultaneously utilize input video’s spatial and temporal features without a separate motion estimation and compensation module. Furthermore, the deformable convolution layers have been used in the proposed model that enhances its motion-awareness capability. Our contribution is twofold; firstly, the proposed approach can overcome the challenges in modeling complex motions by efficiently using spatio-temporal information. Secondly, the proposed model has fewer parameters to learn than state-of-the-art methods, making it a computationally lean and efficient framework for VSR. Experiments are conducted on a benchmark Vid4 dataset to evaluate the efficacy of the proposed approach. The results demonstrate that the proposed approach achieves superior quantitative and qualitative performance compared to the state-of-the-art methods.


Author(s):  
Hanning Gao ◽  
Lingfei Wu ◽  
Po Hu ◽  
Fangli Xu

The task of RDF-to-text generation is to generate a corresponding descriptive text given a set of RDF triples. Most of the previous approaches either cast this task as a sequence-to-sequence problem or employ graph-based encoder for modeling RDF triples and decode a text sequence. However, none of these methods can explicitly model both local and global structure information between and within the triples. To address these issues, we propose to jointly learn local and global structure information via combining two new graph-augmented structural neural encoders (i.e., a bidirectional graph encoder and a bidirectional graph-based meta-paths encoder) for the input triples. Experimental results on two different WebNLG datasets show that our proposed model outperforms the state-of-the-art baselines. Furthermore, we perform a human evaluation that demonstrates the effectiveness of the proposed method by evaluating generated text quality using various subjective metrics.


2020 ◽  
Vol 34 (05) ◽  
pp. 9604-9611
Author(s):  
Yichi Zhang ◽  
Zhijian Ou ◽  
Zhou Yu

Conversations have an intrinsic one-to-many property, which means that multiple responses can be appropriate for the same dialog context. In task-oriented dialogs, this property leads to different valid dialog policies towards task completion. However, none of the existing task-oriented dialog generation approaches takes this property into account. We propose a Multi-Action Data Augmentation (MADA) framework to utilize the one-to-many property to generate diverse appropriate dialog responses. Specifically, we first use dialog states to summarize the dialog history, and then discover all possible mappings from every dialog state to its different valid system actions. During dialog system training, we enable the current dialog state to map to all valid system actions discovered in the previous process to create additional state-action pairs. By incorporating these additional pairs, the dialog policy learns a balanced action distribution, which further guides the dialog model to generate diverse responses. Experimental results show that the proposed framework consistently improves dialog policy diversity, and results in improved response diversity and appropriateness. Our model obtains state-of-the-art results on MultiWOZ.


Sign in / Sign up

Export Citation Format

Share Document