scholarly journals Unsupervised Attributed Multiplex Network Embedding

2020 ◽  
Vol 34 (04) ◽  
pp. 5371-5378
Author(s):  
Chanyoung Park ◽  
Donghyun Kim ◽  
Jiawei Han ◽  
Hwanjo Yu

Nodes in a multiplex network are connected by multiple types of relations. However, most existing network embedding methods assume that only a single type of relation exists between nodes. Even for those that consider the multiplexity of a network, they overlook node attributes, resort to node labels for training, and fail to model the global properties of a graph. We present a simple yet effective unsupervised network embedding method for attributed multiplex network called DMGI, inspired by Deep Graph Infomax (DGI) that maximizes the mutual information between local patches of a graph, and the global representation of the entire graph. We devise a systematic way to jointly integrate the node embeddings from multiple graphs by introducing 1) the consensus regularization framework that minimizes the disagreements among the relation-type specific node embeddings, and 2) the universal discriminator that discriminates true samples regardless of the relation types. We also show that the attention mechanism infers the importance of each relation type, and thus can be useful for filtering unnecessary relation types as a preprocessing step. Extensive experiments on various downstream tasks demonstrate that DMGI outperforms the state-of-the-art methods, even though DMGI is fully unsupervised.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Léo Pio-Lopez ◽  
Alberto Valdeolivas ◽  
Laurent Tichit ◽  
Élisabeth Remy ◽  
Anaïs Baudot

AbstractNetwork embedding approaches are gaining momentum to analyse a large variety of networks. Indeed, these approaches have demonstrated their effectiveness in tasks such as community detection, node classification, and link prediction. However, very few network embedding methods have been specifically designed to handle multiplex networks, i.e. networks composed of different layers sharing the same set of nodes but having different types of edges. Moreover, to our knowledge, existing approaches cannot embed multiple nodes from multiplex-heterogeneous networks, i.e. networks composed of several multiplex networks containing both different types of nodes and edges. In this study, we propose MultiVERSE, an extension of the VERSE framework using Random Walks with Restart on Multiplex (RWR-M) and Multiplex-Heterogeneous (RWR-MH) networks. MultiVERSE is a fast and scalable method to learn node embeddings from multiplex and multiplex-heterogeneous networks. We evaluate MultiVERSE on several biological and social networks and demonstrate its performance. MultiVERSE indeed outperforms most of the other methods in the tasks of link prediction and network reconstruction for multiplex network embedding, and is also efficient in link prediction for multiplex-heterogeneous network embedding. Finally, we apply MultiVERSE to study rare disease-gene associations using link prediction and clustering. MultiVERSE is freely available on github at https://github.com/Lpiol/MultiVERSE.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ruili Lu ◽  
Pengfei Jiao ◽  
Yinghui Wang ◽  
Huaming Wu ◽  
Xue Chen

Great achievements have been made in network embedding based on single-layer networks. However, there are a variety of scenarios and systems that can be presented as multiplex networks, which can reveal more interesting patterns hidden in the data compared to single-layer networks. In the field of network embedding, in order to project the multiplex network into the latent space, it is necessary to consider richer structural information among network layers. However, current methods for multiplex network embedding mostly focus on the similarity of nodes in each layer of the network, while ignoring the similarity between different layers. In this paper, for multiplex network embedding, we propose a Layer Information Similarity Concerned Network Embedding (LISCNE) model considering the similarities between layers. Firstly, we introduce the common vector for each node shared by all layers and layer vectors for each layer where common vectors obtain the overall structure of the multiplex network and layer vectors learn semantics for each layer. We get the node embeddings in each layer by concatenating the common vectors and layer vectors with the consideration that the node embedding is related not only to the surrounding neighbors but also to the overall semantics. Furthermore, we define an index to formalize the similarity between different layers and the cross-network association. Constrained by layer similarity, the layer vectors with greater similarity are closer to each other and the aligned node embedding in these layers is also closer. To evaluate our proposed model, we conduct node classification and link prediction tasks to verify the effectiveness of our model, and the results show that LISCNE can achieve better or comparable performance compared to existing baseline methods.


2022 ◽  
Vol 16 (3) ◽  
pp. 1-32
Author(s):  
Junchen Jin ◽  
Mark Heimann ◽  
Di Jin ◽  
Danai Koutra

While most network embedding techniques model the proximity between nodes in a network, recently there has been significant interest in structural embeddings that are based on node equivalences , a notion rooted in sociology: equivalences or positions are collections of nodes that have similar roles—i.e., similar functions, ties or interactions with nodes in other positions—irrespective of their distance or reachability in the network. Unlike the proximity-based methods that are rigorously evaluated in the literature, the evaluation of structural embeddings is less mature. It relies on small synthetic or real networks with labels that are not perfectly defined, and its connection to sociological equivalences has hitherto been vague and tenuous. With new node embedding methods being developed at a breakneck pace, proper evaluation, and systematic characterization of existing approaches will be essential to progress. To fill in this gap, we set out to understand what types of equivalences structural embeddings capture. We are the first to contribute rigorous intrinsic and extrinsic evaluation methodology for structural embeddings, along with carefully-designed, diverse datasets of varying sizes. We observe a number of different evaluation variables that can lead to different results (e.g., choice of similarity measure, classifier, and label definitions). We find that degree distributions within nodes’ local neighborhoods can lead to simple yet effective baselines in their own right and guide the future development of structural embedding. We hope that our findings can influence the design of further node embedding methods and also pave the way for more comprehensive and fair evaluation of structural embedding methods.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012035
Author(s):  
Wujun Tao ◽  
Yu Ye ◽  
Bailin Feng

Abstract There is a growing body of literature that recognizes the importance of network embedding. It intends to encode the graph structure information into a low-dimensional vector for each node in the graph, which benefits the downstream tasks. Most of recent works focus on supervised learning. But they are usually not feasible in real-world datasets owing to the high cost to obtain labels. To address this issue, we design a new unsupervised attributed network embedding method, deep attributed network embedding by mutual information maximization (DMIM). Our method focuses on maximizing mutual information between the hidden representations of the global topological structure and the node attributes, which allows us to obtain the node embedding without manual labeling. To illustrate the effectiveness of our method, we carry out the node classification task using the learned node embeddings. Compared with the state-of-the-art unsupervised methods, our method achieves superior results on various datasets.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nianwen Ning ◽  
Qiuyue Li ◽  
Kai Zhao ◽  
Bin Wu

Multiplex networks have been widely used in information diffusion, social networks, transport, and biology multiomics. They contain multiple types of relations between nodes, in which each type of the relation is intuitively modeled as one layer. In the real world, the formation of a type of relations may only depend on some attribute elements of nodes. Most existing multiplex network embedding methods only focus on intralayer and interlayer structural information while neglecting this dependence between node attributes and the topology of each layer. Attributes that are irrelevant to the network structure could affect the embedding quality of multiplex networks. To address this problem, we propose a novel multiplex network embedding model with high-order node dependence, called HMNE. HMNE simultaneously considers three properties: (1) intralayer high-order proximity of nodes, (2) interlayer dependence in respect of nodes, and (3) the dependence between node attributes and the topology of each layer. In the intralayer embedding phase, we present a symmetric graph convolution-deconvolution model to embed high-order proximity information as the intralayer embedding of nodes in an unsupervised manner. In the interlayer embedding phase, we estimate the local structural complementarity of nodes as an embedding constraint of interlayer dependence. Through these two phases, we can achieve the disentangled representation of node attributes, which can be treated as fined-grained semantic dependence on the topology of each layer. In the restructure phase of node attributes, we perform a linear fusion of attribute disentangled representations for each node as a reconstruction of original attributes. Extensive experiments have been conducted on six real-world networks. The experimental results demonstrate that the proposed model outperforms the state-of-the-art methods in cross-domain link prediction and shared community detection tasks.


Author(s):  
Liang Yang ◽  
Yuexue Wang ◽  
Junhua Gu ◽  
Chuan Wang ◽  
Xiaochun Cao ◽  
...  

Motivated by the capability of Generative Adversarial Network on exploring the latent semantic space and capturing semantic variations in the data distribution, adversarial learning has been adopted in network embedding to improve the robustness. However, this important ability is lost in existing adversarially regularized network embedding methods, because their embedding results are directly compared to the samples drawn from perturbation (Gaussian) distribution without any rectification from real data. To overcome this vital issue, a novel Joint Adversarial Network Embedding (JANE) framework is proposed to jointly distinguish the real and fake combinations of the embeddings, topology information and node features. JANE contains three pluggable components, Embedding module, Generator module and Discriminator module. The overall objective function of JANE is defined in a min-max form, which can be optimized via alternating stochastic gradient. Extensive experiments demonstrate the remarkable superiority of the proposed JANE on link prediction (3% gains in both AUC and AP) and node clustering (5% gain in F1 score).


2021 ◽  
Author(s):  
Shimeng Zhan ◽  
Nianwen Ning ◽  
Kai Zhao ◽  
Lianwei Li ◽  
Bin Wu ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Han-Jing Jiang ◽  
Zhen-Hao Guo ◽  
Kai Zheng

Abstract Background The prediction of potential drug-target interactions (DTIs) not only provides a better comprehension of biological processes but also is critical for identifying new drugs. However, due to the disadvantages of expensive and high time-consuming traditional experiments, only a small section of interactions between drugs and targets in the database were verified experimentally. Therefore, it is meaningful and important to develop new computational methods with good performance for DTIs prediction. At present, many existing computational methods only utilize the single type of interactions between drugs and proteins without paying attention to the associations and influences with other types of molecules. Methods In this work, we developed a novel network embedding-based heterogeneous information integration model to predict potential drug-target interactions. Firstly, a heterogeneous multi-molecuar information network is built by combining the known associations among protein, drug, lncRNA, disease, and miRNA. Secondly, the Large-scale Information Network Embedding (LINE) model is used to learn behavior information (associations with other nodes) of drugs and proteins in the network. Hence, the known drug-protein interaction pairs can be represented as a combination of attribute information (e.g. protein sequences information and drug molecular fingerprints) and behavior information of themselves. Thirdly, the Random Forest classifier is used for training and prediction. Results In the results, under the five-fold cross validation, our method obtained 85.83% prediction accuracy with 80.47% sensitivity at the AUC of 92.33%. Moreover, in the case studies of three common drugs, the top 10 candidate targets have 8 (Caffeine), 7 (Clozapine) and 6 (Pioglitazone) are respectively verified to be associated with corresponding drugs. Conclusions In short, these results indicate that our method can be a powerful tool for predicting potential drug-target interactions and finding unknown targets for certain drugs or unknown drugs for certain targets.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zheng Wang ◽  
Yuexin Wu ◽  
Yang Bao ◽  
Jing Yu ◽  
Xiaohui Wang

Network embedding that learns representations of network nodes plays a critical role in network analysis, since it enables many downstream learning tasks. Although various network embedding methods have been proposed, they are mainly designed for a single network scenario. This paper considers a “multiple network” scenario by studying the problem of fusing the node embeddings and incomplete attributes from two different networks. To address this problem, we propose to complement the incomplete attributes, so as to conduct data fusion via concatenation. Specifically, we first propose a simple inductive method, in which attributes are defined as a parametric function of the given node embedding vectors. We then propose its transductive variant by adaptively learning an adjacency graph to approximate the original network structure. Additionally, we also provide a light version of this transductive variant. Experimental results on four datasets demonstrate the superiority of our methods.


Sign in / Sign up

Export Citation Format

Share Document