scholarly journals DGE: Deep Generative Network Embedding Based on Commonality and Individuality

2020 ◽  
Vol 34 (04) ◽  
pp. 6949-6956
Author(s):  
Sheng Zhou ◽  
Xin Wang ◽  
Jiajun Bu ◽  
Martin Ester ◽  
Pinggang Yu ◽  
...  

Network embedding plays a crucial role in network analysis to provide effective representations for a variety of learning tasks. Existing attributed network embedding methods mainly focus on preserving the observed node attributes and network topology in the latent embedding space, with the assumption that nodes connected through edges will share similar attributes. However, our empirical analysis of real-world datasets shows that there exist both commonality and individuality between node attributes and network topology. On the one hand, similar nodes are expected to share similar attributes and have edges connecting them (commonality). On the other hand, each information source may maintain individual differences as well (individuality). Simultaneously capturing commonality and individuality is very challenging due to their exclusive nature and existing work fail to do so. In this paper, we propose a deep generative embedding (DGE) framework which simultaneously captures commonality and individuality between network topology and node attributes in a generative process. Stochastic gradient variational Bayesian (SGVB) optimization is employed to infer model parameters as well as the node embeddings. Extensive experiments on four real-world datasets show the superiority of our proposed DGE framework in various tasks including node classification and link prediction.

Author(s):  
Yueyang Wang ◽  
Ziheng Duan ◽  
Binbing Liao ◽  
Fei Wu ◽  
Yueting Zhuang

Network embedding which assigns nodes in networks to lowdimensional representations has received increasing attention in recent years. However, most existing approaches, especially the spectral-based methods, only consider the attributes in homogeneous networks. They are weak for heterogeneous attributed networks that involve different node types as well as rich node attributes and are common in real-world scenarios. In this paper, we propose HANE, a novel network embedding method based on Graph Convolutional Networks, that leverages both the heterogeneity and the node attributes to generate high-quality embeddings. The experiments on the real-world dataset show the effectiveness of our method.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012035
Author(s):  
Wujun Tao ◽  
Yu Ye ◽  
Bailin Feng

Abstract There is a growing body of literature that recognizes the importance of network embedding. It intends to encode the graph structure information into a low-dimensional vector for each node in the graph, which benefits the downstream tasks. Most of recent works focus on supervised learning. But they are usually not feasible in real-world datasets owing to the high cost to obtain labels. To address this issue, we design a new unsupervised attributed network embedding method, deep attributed network embedding by mutual information maximization (DMIM). Our method focuses on maximizing mutual information between the hidden representations of the global topological structure and the node attributes, which allows us to obtain the node embedding without manual labeling. To illustrate the effectiveness of our method, we carry out the node classification task using the learned node embeddings. Compared with the state-of-the-art unsupervised methods, our method achieves superior results on various datasets.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2020 ◽  
Vol 34 (01) ◽  
pp. 19-26 ◽  
Author(s):  
Chong Chen ◽  
Min Zhang ◽  
Yongfeng Zhang ◽  
Weizhi Ma ◽  
Yiqun Liu ◽  
...  

Recent studies on recommendation have largely focused on exploring state-of-the-art neural networks to improve the expressiveness of models, while typically apply the Negative Sampling (NS) strategy for efficient learning. Despite effectiveness, two important issues have not been well-considered in existing methods: 1) NS suffers from dramatic fluctuation, making sampling-based methods difficult to achieve the optimal ranking performance in practical applications; 2) although heterogeneous feedback (e.g., view, click, and purchase) is widespread in many online systems, most existing methods leverage only one primary type of user feedback such as purchase. In this work, we propose a novel non-sampling transfer learning solution, named Efficient Heterogeneous Collaborative Filtering (EHCF) for Top-N recommendation. It can not only model fine-grained user-item relations, but also efficiently learn model parameters from the whole heterogeneous data (including all unlabeled data) with a rather low time complexity. Extensive experiments on three real-world datasets show that EHCF significantly outperforms state-of-the-art recommendation methods in both traditional (single-behavior) and heterogeneous scenarios. Moreover, EHCF shows significant improvements in training efficiency, making it more applicable to real-world large-scale systems. Our implementation has been released 1 to facilitate further developments on efficient whole-data based neural methods.


Author(s):  
Yu Han ◽  
Jie Tang ◽  
Qian Chen

Network embedding has been extensively studied in recent years. In addition to the works on static networks, some researchers try to propose new models for evolving networks. However, sometimes most of these dynamic network embedding models are still not in line with the actual situation, since these models have a strong assumption that we can achieve all the changes in the whole network, while in fact we cannot do this in some real world networks, such as the web networks and some large social networks. So in this paper, we study a novel and challenging problem, i.e., network embedding under partial monitoring for evolving networks. We propose a model on dynamic networks in which we cannot perceive all the changes of the structure. We analyze our model theoretically, and give a bound to the error between the results of our model and the potential optimal cases. We evaluate the performance of our model from two aspects. The experimental results on real world datasets show that our model outperforms the baseline models by a large margin.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 771
Author(s):  
Qiang Wei ◽  
Guangmin Hu

Collected network data are often incomplete, with both missing nodes and missing edges. Thus, network completion that infers the unobserved part of the network is essential for downstream tasks. Despite the emerging literature related to network recovery, the potential information has not been effectively exploited. In this paper, we propose a novel unified deep graph convolutional network that infers missing edges by leveraging node labels, features, and distances. Specifically, we first construct an estimated network topology for the unobserved part using node labels, then jointly refine the network topology and learn the edge likelihood with node labels, node features and distances. Extensive experiments using several real-world datasets show the superiority of our method compared with the state-of-the-art approaches.


Author(s):  
Hong Yang ◽  
Ling Chen ◽  
Minglong Lei ◽  
Lingfeng Niu ◽  
Chuan Zhou ◽  
...  

Discrete network embedding emerged recently as a new direction of network representation learning. Compared with traditional network embedding models, discrete network embedding aims to compress model size and accelerate model inference by learning a set of short binary codes for network vertices. However, existing discrete network embedding methods usually assume that the network structures (e.g., edge weights) are readily available. In real-world scenarios such as social networks, sometimes it is impossible to collect explicit network structure information and it usually needs to be inferred from implicit data such as information cascades in the networks. To address this issue, we present an end-to-end discrete network embedding model for latent networks DELN that can learn binary representations from underlying information cascades. The essential idea is to infer a latent Weisfeiler-Lehman proximity matrix that captures node dependence based on information cascades and then to factorize the latent Weisfiler-Lehman matrix under the binary node representation constraint. Since the learning problem is a mixed integer optimization problem, an efficient maximal likelihood estimation based cyclic coordinate descent (MLE-CCD) algorithm is used as the solution. Experiments on real-world datasets show that the proposed model outperforms the state-of-the-art network embedding methods.


Author(s):  
Shijie Zhang ◽  
Hongzhi Yin ◽  
Qinyong Wang ◽  
Tong Chen ◽  
Hongxu Chen ◽  
...  

On E-commerce platforms, understanding the relationships (e.g., substitute and complement) among products from user's explicit feedback, such as users' online transactions, is of great importance to boost extra sales. However, the significance of such relationships is usually neglected by existing recommender systems. In this paper, we propose a semisupervised deep embedding model, namely, Substitute Products Embedding Model (SPEM), which models the substitutable relationships between products by preserving the second-order proximity, negative first-order proximity and semantic similarity in a product co-purchasing graph based on user's purchasing behaviours. With SPEM, the learned representations of two substitutable products align closely in the latent embedding space. Extensive experiments on real-world datasets are conducted, and the results verify that our model outperforms state-of-the-art baselines.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Wei Zhuo ◽  
Qianyi Zhan ◽  
Yuan Liu ◽  
Zhenping Xie ◽  
Jing Lu

Network embedding (NE), which maps nodes into a low-dimensional latent Euclidean space to represent effective features of each node in the network, has obtained considerable attention in recent years. Many popular NE methods, such as DeepWalk, Node2vec, and LINE, are capable of handling homogeneous networks. However, nodes are always fully accompanied by heterogeneous information (e.g., text descriptions, node properties, and hashtags) in the real-world network, which remains a great challenge to jointly project the topological structure and different types of information into the fixed-dimensional embedding space due to heterogeneity. Besides, in the unweighted network, how to quantify the strength of edges (tightness of connections between nodes) accurately is also a difficulty faced by existing methods. To bridge the gap, in this paper, we propose CAHNE (context attention heterogeneous network embedding), a novel network embedding method, to accurately determine the learning result. Specifically, we propose the concept of node importance to measure the strength of edges, which can better preserve the context relations of a node in unweighted networks. Moreover, text information is a widely ubiquitous feature in real-world networks, e.g., online social networks and citation networks. On account of the sophisticated interactions between the network structure and text features of nodes, CAHNE learns context embeddings for nodes by introducing the context node sequence, and the attention mechanism is also integrated into our model to better reflect the impact of context nodes on the current node. To corroborate the efficacy of CAHNE, we apply our method and various baseline methods on several real-world datasets. The experimental results show that CAHNE achieves higher quality compared to a number of state-of-the-art network embedding methods on the tasks of network reconstruction, link prediction, node classification, and visualization.


Author(s):  
Jianjun Wu ◽  
Ying Sha ◽  
Bo Jiang ◽  
Jianlong Tan

Structural representations of user social influence are critical for a variety of applications such as viral marketing and recommendation products. However, existing studies only focus on capturing and preserving the structure of relations, and ignore the diversity of influence relations patterns among users. To this end, we propose a deep structural influence learning model to learn social influence structure via mining rich features of each user, and fuse information from the aligned selfnetwork component for preserving global and local structure of the influence relations among users. Experiments on two real-world datasets demonstrate that the proposed model outperforms the state-of-the-art algorithms for learning rich representations in multi-label classification task.


Sign in / Sign up

Export Citation Format

Share Document