scholarly journals Inferring Substitutable Products with Deep Network Embedding

Author(s):  
Shijie Zhang ◽  
Hongzhi Yin ◽  
Qinyong Wang ◽  
Tong Chen ◽  
Hongxu Chen ◽  
...  

On E-commerce platforms, understanding the relationships (e.g., substitute and complement) among products from user's explicit feedback, such as users' online transactions, is of great importance to boost extra sales. However, the significance of such relationships is usually neglected by existing recommender systems. In this paper, we propose a semisupervised deep embedding model, namely, Substitute Products Embedding Model (SPEM), which models the substitutable relationships between products by preserving the second-order proximity, negative first-order proximity and semantic similarity in a product co-purchasing graph based on user's purchasing behaviours. With SPEM, the learned representations of two substitutable products align closely in the latent embedding space. Extensive experiments on real-world datasets are conducted, and the results verify that our model outperforms state-of-the-art baselines.

Author(s):  
Jianjun Wu ◽  
Ying Sha ◽  
Bo Jiang ◽  
Jianlong Tan

Structural representations of user social influence are critical for a variety of applications such as viral marketing and recommendation products. However, existing studies only focus on capturing and preserving the structure of relations, and ignore the diversity of influence relations patterns among users. To this end, we propose a deep structural influence learning model to learn social influence structure via mining rich features of each user, and fuse information from the aligned selfnetwork component for preserving global and local structure of the influence relations among users. Experiments on two real-world datasets demonstrate that the proposed model outperforms the state-of-the-art algorithms for learning rich representations in multi-label classification task.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2020 ◽  
Vol 34 (01) ◽  
pp. 19-26 ◽  
Author(s):  
Chong Chen ◽  
Min Zhang ◽  
Yongfeng Zhang ◽  
Weizhi Ma ◽  
Yiqun Liu ◽  
...  

Recent studies on recommendation have largely focused on exploring state-of-the-art neural networks to improve the expressiveness of models, while typically apply the Negative Sampling (NS) strategy for efficient learning. Despite effectiveness, two important issues have not been well-considered in existing methods: 1) NS suffers from dramatic fluctuation, making sampling-based methods difficult to achieve the optimal ranking performance in practical applications; 2) although heterogeneous feedback (e.g., view, click, and purchase) is widespread in many online systems, most existing methods leverage only one primary type of user feedback such as purchase. In this work, we propose a novel non-sampling transfer learning solution, named Efficient Heterogeneous Collaborative Filtering (EHCF) for Top-N recommendation. It can not only model fine-grained user-item relations, but also efficiently learn model parameters from the whole heterogeneous data (including all unlabeled data) with a rather low time complexity. Extensive experiments on three real-world datasets show that EHCF significantly outperforms state-of-the-art recommendation methods in both traditional (single-behavior) and heterogeneous scenarios. Moreover, EHCF shows significant improvements in training efficiency, making it more applicable to real-world large-scale systems. Our implementation has been released 1 to facilitate further developments on efficient whole-data based neural methods.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Yu Han ◽  
Jie Tang ◽  
Qian Chen

Network embedding has been extensively studied in recent years. In addition to the works on static networks, some researchers try to propose new models for evolving networks. However, sometimes most of these dynamic network embedding models are still not in line with the actual situation, since these models have a strong assumption that we can achieve all the changes in the whole network, while in fact we cannot do this in some real world networks, such as the web networks and some large social networks. So in this paper, we study a novel and challenging problem, i.e., network embedding under partial monitoring for evolving networks. We propose a model on dynamic networks in which we cannot perceive all the changes of the structure. We analyze our model theoretically, and give a bound to the error between the results of our model and the potential optimal cases. We evaluate the performance of our model from two aspects. The experimental results on real world datasets show that our model outperforms the baseline models by a large margin.


Author(s):  
Chengzhen Fu ◽  
Yan Zhang

Query-document semantic interactions are essential for the success of many cloze-style question answering models. Recently, researchers have proposed several attention-based methods to predict the answer by focusing on appropriate subparts of the context document. In this paper, we design a novel module to produce the query-aware context vector, named Multi-Space based Context Fusion (MSCF), with the following considerations: (1) interactions are applied across multiple latent semantic spaces; (2) attention is measured at bit level, not at token level. Moreover, we extend MSCF to the multi-hop architecture. This unified model is called Enhanced Attentive Reader (EA Reader). During the iterative inference process, the reader is equipped with a novel memory update rule and maintains the understanding of documents through read, update and write operations. We conduct extensive experiments on four real-world datasets. Our results demonstrate that EA Reader outperforms state-of-the-art models.


Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.


Author(s):  
Lei Feng ◽  
Bo An

Partial label learning deals with the problem where each training instance is assigned a set of candidate labels, only one of which is correct. This paper provides the first attempt to leverage the idea of self-training for dealing with partially labeled examples. Specifically, we propose a unified formulation with proper constraints to train the desired model and perform pseudo-labeling jointly. For pseudo-labeling, unlike traditional self-training that manually differentiates the ground-truth label with enough high confidence, we introduce the maximum infinity norm regularization on the modeling outputs to automatically achieve this consideratum, which results in a convex-concave optimization problem. We show that optimizing this convex-concave problem is equivalent to solving a set of quadratic programming (QP) problems. By proposing an upper-bound surrogate objective function, we turn to solving only one QP problem for improving the optimization efficiency. Extensive experiments on synthesized and real-world datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art partial label learning approaches.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1149
Author(s):  
Thapana Boonchoo ◽  
Xiang Ao ◽  
Qing He

Motivated by the proliferation of trajectory data produced by advanced GPS-enabled devices, trajectory is gaining in complexity and beginning to embroil additional attributes beyond simply the coordinates. As a consequence, this creates the potential to define the similarity between two attribute-aware trajectories. However, most existing trajectory similarity approaches focus only on location based proximities and fail to capture the semantic similarities encompassed by these additional asymmetric attributes (aspects) of trajectories. In this paper, we propose multi-aspect embedding for attribute-aware trajectories (MAEAT), a representation learning approach for trajectories that simultaneously models the similarities according to their multiple aspects. MAEAT is built upon a sentence embedding algorithm and directly learns whole trajectory embedding via predicting the context aspect tokens when given a trajectory. Two kinds of token generation methods are proposed to extract multiple aspects from the raw trajectories, and a regularization is devised to control the importance among aspects. Extensive experiments on the benchmark and real-world datasets show the effectiveness and efficiency of the proposed MAEAT compared to the state-of-the-art and baseline methods. The results of MAEAT can well support representative downstream trajectory mining and management tasks, and the algorithm outperforms other compared methods in execution time by at least two orders of magnitude.


2020 ◽  
Vol 34 (10) ◽  
pp. 13853-13854
Author(s):  
Jiacheng Li ◽  
Chunyuan Yuan ◽  
Wei Zhou ◽  
Jingli Wang ◽  
Songlin Hu

Social media has become a preferential place for sharing information. However, some users may create multiple accounts and manipulate them to deceive legitimate users. Most previous studies utilize verbal or behavior features based methods to solve this problem, but they are only designed for some particular platforms, leading to low universalness.In this paper, to support multiple platforms, we construct interaction tree for each account based on their social interactions which is common characteristic of social platforms. Then we propose a new method to calculate the social interaction entropy of each account and detect the accounts which are controlled by the same user. Experimental results on two real-world datasets show that the method has robust superiority over state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document