scholarly journals Reports of the AAAI 2010 Conference Workshops

AI Magazine ◽  
2010 ◽  
Vol 31 (4) ◽  
pp. 95
Author(s):  
David W. Aha ◽  
Mark Boddy ◽  
Vadim Bulitko ◽  
Artur S. D'Avila Garcez ◽  
Prashant Doshi ◽  
...  

The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.

AI Magazine ◽  
2013 ◽  
Vol 34 (4) ◽  
pp. 108-115
Author(s):  
Vikas Agrawal ◽  
Christopher Archibald ◽  
Mehul Bhatt ◽  
Hung Bui ◽  
Diane J. Cook ◽  
...  

The AAAI-13 Workshop Program, a part of the 27th AAAI Conference on Artificial Intelligence, was held Sunday and Monday, July 14–15, 2013 at the Hyatt Regency Bellevue Hotel in Bellevue, Washington, USA. The program included 12 workshops covering a wide range of topics in artificial intelligence, including Activity Context-Aware System Architectures (WS-13-05); Artificial Intelligence and Robotics Methods in Computational Biology (WS-13-06); Combining Constraint Solving with Mining and Learning (WS-13-07); Computer Poker and Imperfect Information (WS-13-08); Expanding the Boundaries of Health Informatics Using Artificial Intelligence (WS-13-09); Intelligent Robotic Systems (WS-13-10); Intelligent Techniques for Web Personalization and Recommendation (WS-13-11); Learning Rich Representations from Low-Level Sensors (WS-13-12); Plan, Activity, and Intent Recognition (WS-13-13); Space, Time, and Ambient Intelligence (WS-13-14); Trading Agent Design and Analysis (WS-13-15); and Statistical Relational Artificial Intelligence (WS-13-16).


AI Magazine ◽  
2018 ◽  
Vol 39 (4) ◽  
pp. 45-56
Author(s):  
Bruno Bouchard ◽  
Kevin Bouchard ◽  
Noam Brown ◽  
Niyati Chhaya ◽  
Eitan Farchi ◽  
...  

The AAAI-18 workshop program included 15 workshops covering a wide range of topics in AI. Workshops were held Sunday and Monday, February 2–7, 2018, at the Hilton New Orleans Riverside in New Orleans, Louisiana, USA. This report contains summaries of the Affective Content Analysis workshop; the Artificial Intelligence Applied to Assistive Technologies and Smart Environments; the AI and Marketing Science workshop; the Artificial Intelligence for Cyber Security workshop; the AI for Imperfect-Information Games; the Declarative Learning Based Programming workshop; the Engineering Dependable and Secure Machine Learning Systems workshop; the Health Intelligence workshop; the Knowledge Extraction from Games workshop; the Plan, Activity, and Intent Recognition workshop; the Planning and Inference workshop; the Preference Handling workshop; the Reasoning and Learning for Human-Machine Dialogues workshop; and the the AI Enhanced Internet of Things Data Processing for Intelligent Applications workshop.


AI Magazine ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 67-78
Author(s):  
Guy Barash ◽  
Mauricio Castillo-Effen ◽  
Niyati Chhaya ◽  
Peter Clark ◽  
Huáscar Espinoza ◽  
...  

The workshop program of the Association for the Advancement of Artificial Intelligence’s 33rd Conference on Artificial Intelligence (AAAI-19) was held in Honolulu, Hawaii, on Sunday and Monday, January 27–28, 2019. There were fifteen workshops in the program: Affective Content Analysis: Modeling Affect-in-Action, Agile Robotics for Industrial Automation Competition, Artificial Intelligence for Cyber Security, Artificial Intelligence Safety, Dialog System Technology Challenge, Engineering Dependable and Secure Machine Learning Systems, Games and Simulations for Artificial Intelligence, Health Intelligence, Knowledge Extraction from Games, Network Interpretability for Deep Learning, Plan, Activity, and Intent Recognition, Reasoning and Learning for Human-Machine Dialogues, Reasoning for Complex Question Answering, Recommender Systems Meet Natural Language Processing, Reinforcement Learning in Games, and Reproducible AI. This report contains brief summaries of the all the workshops that were held.


Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 275
Author(s):  
Peter Cihon ◽  
Jonas Schuett ◽  
Seth D. Baum

Corporations play a major role in artificial intelligence (AI) research, development, and deployment, with profound consequences for society. This paper surveys opportunities to improve how corporations govern their AI activities so as to better advance the public interest. The paper focuses on the roles of and opportunities for a wide range of actors inside the corporation—managers, workers, and investors—and outside the corporation—corporate partners and competitors, industry consortia, nonprofit organizations, the public, the media, and governments. Whereas prior work on multistakeholder AI governance has proposed dedicated institutions to bring together diverse actors and stakeholders, this paper explores the opportunities they have even in the absence of dedicated multistakeholder institutions. The paper illustrates these opportunities with many cases, including the participation of Google in the U.S. Department of Defense Project Maven; the publication of potentially harmful AI research by OpenAI, with input from the Partnership on AI; and the sale of facial recognition technology to law enforcement by corporations including Amazon, IBM, and Microsoft. These and other cases demonstrate the wide range of mechanisms to advance AI corporate governance in the public interest, especially when diverse actors work together.


2014 ◽  
Vol 898 ◽  
pp. 763-766
Author(s):  
Zhi Hao Li

The research and application of artificial intelligence has a very wide range in intelligent robot field. Intelligent robot can not only make use of artificial intelligence gain access to external data, information, (such as stereo vision system, face recognition and tracking, etc.), and then deal with it so as to exactly describe external environment, and complete a task independently, owing the ability of learning knowledge, but also have self-many kinds of artificial intelligence like judgment and decision making, processing capacity and so on. It can make corresponding decision according to environmental changes. Its application range is expanding. In deep sea exploration, star exploration, mineral exploration, heavy pollution, domestic service, entertainment clubs, health care and so on, the figure of intelligent robots artificial intelligence application can all be seen.


Author(s):  
Tse Guan Tan ◽  
Jason Teo

AbstrakTeknik Kecerdasan Buatan (AI) berjaya digunakan dan diaplikasikan dalam pelbagai bidang, termasukpembuatan, kejuruteraan, ekonomi, perubatan dan ketenteraan. Kebelakangan ini, terdapat minat yangsemakin meningkat dalam Permainan Kecerdasan Buatan atau permainan AI. Permainan AI merujukkepada teknik yang diaplikasikan dalam permainan komputer dan video seperti pembelajaran, pathfinding,perancangan, dan lain-lain bagi mewujudkan tingkah laku pintar dan autonomi kepada karakter dalampermainan. Objektif utama kajian ini adalah untuk mengemukakan beberapa teknik yang biasa digunakandalam merekabentuk dan mengawal karakter berasaskan komputer untuk permainan Ms Pac-Man antaratahun 2005-2012. Ms Pac-Man adalah salah satu permainan yang digunakan dalam siri pertandinganpermainan diperingkat antarabangsa sebagai penanda aras untuk perbandingan pengawal autonomi.Kaedah analisis kandungan yang menyeluruh dijalankan secara ulasan dan sorotan literatur secara kritikal.Dapatan kajian menunjukkan bahawa, walaupun terdapat berbagai teknik, limitasi utama dalam kajianterdahulu untuk mewujudkan karakter permaianan Pac Man adalah kekurangan Generalization Capabilitydalam kepelbagaian karakter permainan. Hasil kajian ini akan dapat digunakan oleh penyelidik untukmeningkatkan keupayaan Generalization AI karakter permainan dalam Pasaran Permainan KecerdasanBuatan. Abstract Artificial Intelligence (AI) techniques are successfully used and applied in a wide range of areas, includingmanufacturing, engineering, economics, medicine and military. In recent years, there has been anincreasing interest in Game Artificial Intelligence or Game AI. Game AI refers to techniques applied incomputer and video games such as learning, pathfinding, planning, and many others for creating intelligentand autonomous behaviour to the characters in games. The main objective of this paper is to highlightseveral most common of the AI techniques for designing and controlling the computer-based charactersto play Ms. Pac-Man game between years 2005-2012. The Ms. Pac-Man is one of the games that used asbenchmark for comparison of autonomous controllers in a series of international Game AI competitions.An extensive content analysis method was conducted through critical review on previous literature relatedto the field. Findings highlight, although there was various and unique techniques available, the majorlimitation of previous studies for creating the Ms. Pac-Man game characters is a lack of generalizationcapability across different game characters. The findings could provide the future direction for researchersto improve the Generalization A.I capability of game characters in the Game Artificial Intelligence market.


2020 ◽  
Vol 55 (S3) ◽  
pp. 14-45

Although ion channels are crucial in many physiological processes and constitute an important class of drug targets, much is still unclear about their function and possible malfunctions that lead to diseases. In recent years, computational methods have evolved into important and invaluable approaches for studying ion channels and their functions. This is mainly due to their demanding mechanism of action where a static picture of an ion channel structure is often insufficient to fully understand the underlying mechanism. Therefore, the use of computational methods is as important as chemical-biological based experimental methods for a better understanding of ion channels. This review provides an overview on a variety of computational methods and software specific to the field of ion-channels. Artificial intelligence (or more precisely machine learning) approaches are applied for the sequence-based prediction of ion channel family, or topology of the transmembrane region. In case sufficient data on ion channel modulators is available, these methods can also be applied for quantitative structureactivity relationship (QSAR) analysis. Molecular dynamics (MD) simulations combined with computational molecular design methods such as docking can be used for analysing the function of ion channels including ion conductance, different conformational states, binding sites and ligand interactions, and the influence of mutations on their function. In the absence of a three-dimensional protein structure, homology modelling can be applied to create a model of your ion channel structure of interest. Besides highlighting a wide range of successful applications, we will also provide a basic introduction to the most important computational methods and discuss best practices to get a rough idea of possible applications and risks.


2020 ◽  
Author(s):  
Amol Thakkar ◽  
Veronika Chadimova ◽  
Esben Jannik Bjerrum ◽  
Ola Engkvist ◽  
Jean-Louis Reymond

<p>Computer aided synthesis planning (CASP) is part of a suite of artificial intelligence (AI) based tools that are able to propose synthesis to a wide range of compounds. However, at present they are too slow to be used to screen the synthetic feasibility of millions of generated or enumerated compounds before identification of potential bioactivity by virtual screening (VS) workflows. Herein we report a machine learning (ML) based method capable of classifying whether a synthetic route can be identified for a particular compound or not by the CASP tool AiZynthFinder. The resulting ML models return a retrosynthetic accessibility score (RAscore) of any molecule of interest, and computes 4,500 times faster than retrosynthetic analysis performed by the underlying CASP tool. The RAscore should be useful for the pre-screening millions of virtual molecules from enumerated databases or generative models for synthetic accessibility and produce higher quality databases for virtual screening of biological activity. </p>


Sign in / Sign up

Export Citation Format

Share Document