scholarly journals Reports of the 2013 AAAI Spring Symposium Series

AI Magazine ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 93-98 ◽  
Author(s):  
Vita Markman ◽  
Georgi Stojanov ◽  
Bipin Indurkhya ◽  
Takashi Kido ◽  
Keiki Takadama ◽  
...  

The Association for the Advancement of Artificial Intelligence was pleased to present the AAAI 2013 Spring Symposium Series, held Monday through Wednesday, March 25-27, 2013. The titles of the eight symposia were Analyzing Microtext, Creativity and (Early) Cognitive Development, Data Driven Wellness: From Self-Tracking to Behavior Change, Designing Intelligent Robots: Reintegrating AI II, Lifelong Machine Learning, Shikakeology: Designing Triggers for Behavior Change, Trust and Autonomous Systems, and Weakly Supervised Learning from Multimedia. This report contains summaries of the symposia, written, in most cases, by the cochairs of the symposium.

2021 ◽  
Vol 8 ◽  
Author(s):  
Hans-Christoph Burmeister ◽  
Manfred Constapel

In this survey, results from an investigation on collision avoidance and path planning methods developed in recent research are provided. In particular, existing methods based on Artificial Intelligence, data-driven methods based on Machine Learning, and other Data Science approaches are investigated to provide a comprehensive overview of maritime collision avoidance techniques applicable to Maritime Autonomous Surface Ships. Relevant aspects of those methods and approaches are summarized and put into suitable perspectives. As autonomous systems are expected to operate alongside or in place of conventionally manned vessels, they must comply with the COLREGs for robust decision-support/-making. Thus, the survey specifically covers how COLREGs are addressed by the investigated methods and approaches. A conclusion regarding their utilization in industrial implementations is drawn.


2020 ◽  
Vol 54 (12) ◽  
pp. 942-947
Author(s):  
Pol Mac Aonghusa ◽  
Susan Michie

Abstract Background Artificial Intelligence (AI) is transforming the process of scientific research. AI, coupled with availability of large datasets and increasing computational power, is accelerating progress in areas such as genetics, climate change and astronomy [NeurIPS 2019 Workshop Tackling Climate Change with Machine Learning, Vancouver, Canada; Hausen R, Robertson BE. Morpheus: A deep learning framework for the pixel-level analysis of astronomical image data. Astrophys J Suppl Ser. 2020;248:20; Dias R, Torkamani A. AI in clinical and genomic diagnostics. Genome Med. 2019;11:70.]. The application of AI in behavioral science is still in its infancy and realizing the promise of AI requires adapting current practices. Purposes By using AI to synthesize and interpret behavior change intervention evaluation report findings at a scale beyond human capability, the HBCP seeks to improve the efficiency and effectiveness of research activities. We explore challenges facing AI adoption in behavioral science through the lens of lessons learned during the Human Behaviour-Change Project (HBCP). Methods The project used an iterative cycle of development and testing of AI algorithms. Using a corpus of published research reports of randomized controlled trials of behavioral interventions, behavioral science experts annotated occurrences of interventions and outcomes. AI algorithms were trained to recognize natural language patterns associated with interventions and outcomes from the expert human annotations. Once trained, the AI algorithms were used to predict outcomes for interventions that were checked by behavioral scientists. Results Intervention reports contain many items of information needing to be extracted and these are expressed in hugely variable and idiosyncratic language used in research reports to convey information makes developing algorithms to extract all the information with near perfect accuracy impractical. However, statistical matching algorithms combined with advanced machine learning approaches created reasonably accurate outcome predictions from incomplete data. Conclusions AI holds promise for achieving the goal of predicting outcomes of behavior change interventions, based on information that is automatically extracted from intervention evaluation reports. This information can be used to train knowledge systems using machine learning and reasoning algorithms.


2021 ◽  
pp. medethics-2020-107095
Author(s):  
Charalampia (Xaroula) Kerasidou ◽  
Angeliki Kerasidou ◽  
Monika Buscher ◽  
Stephen Wilkinson

Artificial intelligence (AI) is changing healthcare and the practice of medicine as data-driven science and machine-learning technologies, in particular, are contributing to a variety of medical and clinical tasks. Such advancements have also raised many questions, especially about public trust. As a response to these concerns there has been a concentrated effort from public bodies, policy-makers and technology companies leading the way in AI to address what is identified as a "public trust deficit". This paper argues that a focus on trust as the basis upon which a relationship between this new technology and the public is built is, at best, ineffective, at worst, inappropriate or even dangerous, as it diverts attention from what is actually needed to actively warrant trust. Instead of agonising about how to facilitate trust, a type of relationship which can leave those trusting vulnerable and exposed, we argue that efforts should be focused on the difficult and dynamic process of ensuring reliance underwritten by strong legal and regulatory frameworks. From there, trust could emerge but not merely as a means to an end. Instead, as something to work in practice towards; that is, the deserved result of an ongoing ethical relationship where there is the appropriate, enforceable and reliable regulatory infrastructure in place for problems, challenges and power asymmetries to be continuously accounted for and appropriately redressed.


AI Magazine ◽  
2017 ◽  
Vol 38 (4) ◽  
pp. 99-106
Author(s):  
Jeannette Bohg ◽  
Xavier Boix ◽  
Nancy Chang ◽  
Elizabeth F. Churchill ◽  
Vivian Chu ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2017 Spring Symposium Series, held Monday through Wednesday, March 27–29, 2017 on the campus of Stanford University. The eight symposia held were Artificial Intelligence for the Social Good (SS-17-01); Computational Construction Grammar and Natural Language Understanding (SS-17-02); Computational Context: Why It's Important, What It Means, and Can It Be Computed? (SS-17-03); Designing the User Experience of Machine Learning Systems (SS-17-04); Interactive Multisensory Object Perception for Embodied Agents (SS-17-05); Learning from Observation of Humans (SS-17-06); Science of Intelligence: Computational Principles of Natural and Artificial Intelligence (SS-17-07); and Wellbeing AI: From Machine Learning to Subjectivity Oriented Computing (SS-17-08). This report, compiled from organizers of the symposia, summarizes the research that took place.


AI Magazine ◽  
2012 ◽  
Vol 33 (3) ◽  
pp. 109
Author(s):  
Harith Alani ◽  
Bo An ◽  
Manish Jain ◽  
Takashi Kido ◽  
George Konidaris ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University’s Department of Computer Science, was pleased to present the 2012 Spring Symposium Series, held Monday through Wednesday, March 26–28, 2012 at Stanford University, Stanford, California USA. The six symposia held were AI, The Fundamental Social Aggregation Challenge (cochaired by W. F. Lawless, Don Sofge, Mark Klein, and Laurent Chaudron); Designing Intelligent Robots (cochaired by George Konidaris, Byron Boots, Stephen Hart, Todd Hester, Sarah Osentoski, and David Wingate); Game Theory for Security, Sustainability, and Health (cochaired by Bo An and Manish Jain); Intelligent Web Services Meet Social Computing (cochaired by Tomas Vitvar, Harith Alani, and David Martin); Self-Tracking and Collective Intelligence for Personal Wellness (cochaired by Takashi Kido and Keiki Takadama); and Wisdom of the Crowd (cochaired by Caroline Pantofaru, Sonia Chernova, and Alex Sorokin). The papers of the six symposia were published in the AAAI technical report series.


2020 ◽  
Vol 39 (7) ◽  
pp. 518-519
Author(s):  
Jyoti Behura

Welcome to the latest installment of Geophysics Bright Spots. For most of us, the pandemic has upended our daily routines. Personally, a minor silver lining in all of this chaos has been the gain of a few extra hours every week. I have used this time to catch up on the fascinating work being done in the field of artificial intelligence and its applications to numerous disciplines. An emerging trend is physics-informed machine learning, which will help us bridge the gap between traditional theoretical approaches and more recent data-driven methodologies, leading to physically plausible and meaningful results. To follow is a list of research that the editors found interesting in the latest issue of Geophysics. I sincerely hope these articles enlighten you and take your mind off some of the chaos surrounding us.


10.2196/16607 ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. e16607 ◽  
Author(s):  
Christian Lovis

Data-driven science and its corollaries in machine learning and the wider field of artificial intelligence have the potential to drive important changes in medicine. However, medicine is not a science like any other: It is deeply and tightly bound with a large and wide network of legal, ethical, regulatory, economical, and societal dependencies. As a consequence, the scientific and technological progresses in handling information and its further processing and cross-linking for decision support and predictive systems must be accompanied by parallel changes in the global environment, with numerous stakeholders, including citizen and society. What can be seen at the first glance as a barrier and a mechanism slowing down the progression of data science must, however, be considered an important asset. Only global adoption can transform the potential of big data and artificial intelligence into an effective breakthroughs in handling health and medicine. This requires science and society, scientists and citizens, to progress together.


2020 ◽  
Author(s):  
Zhe Xu

<p>Despite the fact that artificial intelligence boosted with data-driven methods (e.g., deep neural networks) has surpassed human-level performance in various tasks, its application to autonomous</p> <p>systems still faces fundamental challenges such as lack of interpretability, intensive need for data and lack of verifiability. In this overview paper, I overview some attempts to address these fundamental challenges by explaining, guiding and verifying autonomous systems, taking into account limited availability of simulated and real data, the expressivity of high-level</p> <p>knowledge representations and the uncertainties of the underlying model. Specifically, this paper covers learning high-level knowledge from data for interpretable autonomous systems,</p><p>guiding autonomous systems with high-level knowledge, and</p><p>verifying and controlling autonomous systems against high-level specifications.</p>


AI Magazine ◽  
2014 ◽  
Vol 35 (3) ◽  
pp. 70-76
Author(s):  
Manish Jain ◽  
Albert Xin Jiang ◽  
Takashi Kiddo ◽  
Keiki Takadama ◽  
Eric G. Mercer ◽  
...  

The Association for the Advancement of Artificial Intelligence was pleased to present the AAAI 2014 Spring Symposium Series, held Monday through Wednesday, March 24–26, 2014. The titles of the eight symposia were Applied Computational Game Theory, Big Data Becomes Personal: Knowledge into Meaning, Formal Verification and Modeling in Human-Machine Systems, Implementing Selves with Safe Motivational Systems and Self-Improvement, The Intersection of Robust Intelligence and Trust in Autonomous Systems, Knowledge Representation and Reasoning in Robotics, Qualitative Representations for Robots, and Social Hacking and Cognitive Security on the Internet and New Media). This report contains summaries of the symposia, written, in most cases, by the cochairs of the symposium.


2021 ◽  
Vol 73 (09) ◽  
pp. 43-43
Author(s):  
Reza Garmeh

The digital transformation that began several years ago continues to grow and evolve. With new advancements in data analytics and machine-learning algorithms, field developers today see more benefits to upgrading their traditional development work flows to automated artificial-intelligence work flows. The transformation has helped develop more-efficient and truly integrated development approaches. Many development scenarios can be automatically generated, examined, and updated very quickly. These approaches become more valuable when coupled with physics-based integrated asset models that are kept close to actual field performance to reduce uncertainty for reactive decision making. In unconventional basins with enormous completion and production databases, data-driven decisions powered by machine-learning techniques are increasing in popularity to solve field development challenges and optimize cube development. Finding a trend within massive amounts of data requires an augmented artificial intelligence where machine learning and human expertise are coupled. With slowed activity and uncertainty in the oil and gas industry from the COVID-19 pandemic and growing pressure for cleaner energy and environmental regulations, operators had to shift economic modeling for environmental considerations, predicting operational hazards and planning mitigations. This has enlightened the value of field development optimization, shifting from traditional workflow iterations on data assimilation and sequential decision making to deep reinforcement learning algorithms to find the best well placement and well type for the next producer or injector. Operators are trying to adapt with the new environment and enhance their capabilities to efficiently plan, execute, and operate field development plans. Collaboration between different disciplines and integrated analyses are key to the success of optimized development strategies. These selected papers and the suggested additional reading provide a good view of what is evolving with field development work flows using data analytics and machine learning in the era of digital transformation. Recommended additional reading at OnePetro: www.onepetro.org. SPE 203073 - Data-Driven and AI Methods To Enhance Collaborative Well Planning and Drilling-Risk Prediction by Richard Mohan, ADNOC, et al. SPE 200895 - Novel Approach To Enhance the Field Development Planning Process and Reservoir Management To Maximize the Recovery Factor of Gas Condensate Reservoirs Through Integrated Asset Modeling by Oswaldo Espinola Gonzalez, Schlumberger, et al. SPE 202373 - Efficient Optimization and Uncertainty Analysis of Field Development Strategies by Incorporating Economic Decisions in Reservoir Simulation Models by James Browning, Texas Tech University, et al.


Sign in / Sign up

Export Citation Format

Share Document