Geophysics Bright Spots

2020 ◽  
Vol 39 (7) ◽  
pp. 518-519
Author(s):  
Jyoti Behura

Welcome to the latest installment of Geophysics Bright Spots. For most of us, the pandemic has upended our daily routines. Personally, a minor silver lining in all of this chaos has been the gain of a few extra hours every week. I have used this time to catch up on the fascinating work being done in the field of artificial intelligence and its applications to numerous disciplines. An emerging trend is physics-informed machine learning, which will help us bridge the gap between traditional theoretical approaches and more recent data-driven methodologies, leading to physically plausible and meaningful results. To follow is a list of research that the editors found interesting in the latest issue of Geophysics. I sincerely hope these articles enlighten you and take your mind off some of the chaos surrounding us.

2021 ◽  
pp. medethics-2020-107095
Author(s):  
Charalampia (Xaroula) Kerasidou ◽  
Angeliki Kerasidou ◽  
Monika Buscher ◽  
Stephen Wilkinson

Artificial intelligence (AI) is changing healthcare and the practice of medicine as data-driven science and machine-learning technologies, in particular, are contributing to a variety of medical and clinical tasks. Such advancements have also raised many questions, especially about public trust. As a response to these concerns there has been a concentrated effort from public bodies, policy-makers and technology companies leading the way in AI to address what is identified as a "public trust deficit". This paper argues that a focus on trust as the basis upon which a relationship between this new technology and the public is built is, at best, ineffective, at worst, inappropriate or even dangerous, as it diverts attention from what is actually needed to actively warrant trust. Instead of agonising about how to facilitate trust, a type of relationship which can leave those trusting vulnerable and exposed, we argue that efforts should be focused on the difficult and dynamic process of ensuring reliance underwritten by strong legal and regulatory frameworks. From there, trust could emerge but not merely as a means to an end. Instead, as something to work in practice towards; that is, the deserved result of an ongoing ethical relationship where there is the appropriate, enforceable and reliable regulatory infrastructure in place for problems, challenges and power asymmetries to be continuously accounted for and appropriately redressed.


AI Magazine ◽  
2013 ◽  
Vol 34 (3) ◽  
pp. 93-98 ◽  
Author(s):  
Vita Markman ◽  
Georgi Stojanov ◽  
Bipin Indurkhya ◽  
Takashi Kido ◽  
Keiki Takadama ◽  
...  

The Association for the Advancement of Artificial Intelligence was pleased to present the AAAI 2013 Spring Symposium Series, held Monday through Wednesday, March 25-27, 2013. The titles of the eight symposia were Analyzing Microtext, Creativity and (Early) Cognitive Development, Data Driven Wellness: From Self-Tracking to Behavior Change, Designing Intelligent Robots: Reintegrating AI II, Lifelong Machine Learning, Shikakeology: Designing Triggers for Behavior Change, Trust and Autonomous Systems, and Weakly Supervised Learning from Multimedia. This report contains summaries of the symposia, written, in most cases, by the cochairs of the symposium.


10.2196/16607 ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. e16607 ◽  
Author(s):  
Christian Lovis

Data-driven science and its corollaries in machine learning and the wider field of artificial intelligence have the potential to drive important changes in medicine. However, medicine is not a science like any other: It is deeply and tightly bound with a large and wide network of legal, ethical, regulatory, economical, and societal dependencies. As a consequence, the scientific and technological progresses in handling information and its further processing and cross-linking for decision support and predictive systems must be accompanied by parallel changes in the global environment, with numerous stakeholders, including citizen and society. What can be seen at the first glance as a barrier and a mechanism slowing down the progression of data science must, however, be considered an important asset. Only global adoption can transform the potential of big data and artificial intelligence into an effective breakthroughs in handling health and medicine. This requires science and society, scientists and citizens, to progress together.


2021 ◽  
Vol 73 (09) ◽  
pp. 43-43
Author(s):  
Reza Garmeh

The digital transformation that began several years ago continues to grow and evolve. With new advancements in data analytics and machine-learning algorithms, field developers today see more benefits to upgrading their traditional development work flows to automated artificial-intelligence work flows. The transformation has helped develop more-efficient and truly integrated development approaches. Many development scenarios can be automatically generated, examined, and updated very quickly. These approaches become more valuable when coupled with physics-based integrated asset models that are kept close to actual field performance to reduce uncertainty for reactive decision making. In unconventional basins with enormous completion and production databases, data-driven decisions powered by machine-learning techniques are increasing in popularity to solve field development challenges and optimize cube development. Finding a trend within massive amounts of data requires an augmented artificial intelligence where machine learning and human expertise are coupled. With slowed activity and uncertainty in the oil and gas industry from the COVID-19 pandemic and growing pressure for cleaner energy and environmental regulations, operators had to shift economic modeling for environmental considerations, predicting operational hazards and planning mitigations. This has enlightened the value of field development optimization, shifting from traditional workflow iterations on data assimilation and sequential decision making to deep reinforcement learning algorithms to find the best well placement and well type for the next producer or injector. Operators are trying to adapt with the new environment and enhance their capabilities to efficiently plan, execute, and operate field development plans. Collaboration between different disciplines and integrated analyses are key to the success of optimized development strategies. These selected papers and the suggested additional reading provide a good view of what is evolving with field development work flows using data analytics and machine learning in the era of digital transformation. Recommended additional reading at OnePetro: www.onepetro.org. SPE 203073 - Data-Driven and AI Methods To Enhance Collaborative Well Planning and Drilling-Risk Prediction by Richard Mohan, ADNOC, et al. SPE 200895 - Novel Approach To Enhance the Field Development Planning Process and Reservoir Management To Maximize the Recovery Factor of Gas Condensate Reservoirs Through Integrated Asset Modeling by Oswaldo Espinola Gonzalez, Schlumberger, et al. SPE 202373 - Efficient Optimization and Uncertainty Analysis of Field Development Strategies by Incorporating Economic Decisions in Reservoir Simulation Models by James Browning, Texas Tech University, et al.


2019 ◽  
Author(s):  
Christian Lovis

UNSTRUCTURED Data-driven science and its corollaries in machine learning and the wider field of artificial intelligence have the potential to drive important changes in medicine. However, medicine is not a science like any other: It is deeply and tightly bound, with a large and wide network of legal, ethical, regulatory, economical, and societal dependencies. As a consequence, the scientific and technological progresses in handling information and its further processing and cross-linking for decision support and predictive systems must be accompanied by parallel changes in the global environment, with numerous stakeholders, including citizen and society. What can be seen at the first glance as a barrier and mechanism slowing down the progression of data science must, however, be considered an important asset. Only global adoption can transform the potential of big data and artificial intelligence into an effective breakthroughs in handling health and medicine. This requires science and society, scientists and citizens, to progress together.


In this chapter, the authors discuss machine learning techniques and artificial intelligence applications, their role in business, and present a practical application of it. They try to highlight how important machine learning can be in data-driven organisations, where the cost and/or the advantages to implement such tools are far greater than having a human—or a team of humans—doing it.


Author(s):  
Dazhong Wu ◽  
Connor Jennings ◽  
Janis Terpenny ◽  
Robert X. Gao ◽  
Soundar Kumara

Manufacturers have faced an increasing need for the development of predictive models that predict mechanical failures and the remaining useful life (RUL) of manufacturing systems or components. Classical model-based or physics-based prognostics often require an in-depth physical understanding of the system of interest to develop closed-form mathematical models. However, prior knowledge of system behavior is not always available, especially for complex manufacturing systems and processes. To complement model-based prognostics, data-driven methods have been increasingly applied to machinery prognostics and maintenance management, transforming legacy manufacturing systems into smart manufacturing systems with artificial intelligence. While previous research has demonstrated the effectiveness of data-driven methods, most of these prognostic methods are based on classical machine learning techniques, such as artificial neural networks (ANNs) and support vector regression (SVR). With the rapid advancement in artificial intelligence, various machine learning algorithms have been developed and widely applied in many engineering fields. The objective of this research is to introduce a random forests (RFs)-based prognostic method for tool wear prediction as well as compare the performance of RFs with feed-forward back propagation (FFBP) ANNs and SVR. Specifically, the performance of FFBP ANNs, SVR, and RFs are compared using an experimental data collected from 315 milling tests. Experimental results have shown that RFs can generate more accurate predictions than FFBP ANNs with a single hidden layer and SVR.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 66
Author(s):  
Natalia Espinoza Sepulveda ◽  
Jyoti Sinha

Artificial intelligence (AI)-based machine learning (ML) models seem to be the future for most of the applications. Recent research effort has also been made on the application of these AI and ML methods in the vibration-based faults diagnosis (VFD) in rotating machines. Several research studies have been published over the last decade on this topic. However, most of the studies are data driven, and the vibration-based ML (VML) model is generally developed on a typical machine. The developed VML model may not predict faults accurately if applied on other identical machines or a machine with different operation conditions or both. Therefore, the current research is on the development of a VML model by optimising the vibration parameters based on the dynamics of the machine. The developed model is then blindly tested at different machine operation conditions to show the robustness and reliability of the proposed VML model.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 332
Author(s):  
Davor Horvatić ◽  
Tomislav Lipic

Well-evidenced advances of data-driven complex machine learning approaches emerging within the so-called second wave of artificial intelligence (AI) fostered the exploration of possible AI applications in various domains and aspects of human life, practices, and society [...]


Sign in / Sign up

Export Citation Format

Share Document