Effect of temperature on the germination of common waterhemp (Amaranthus tuberculatus), giant foxtail (Setaria faberi), and velvetleaf (Abutilon theophrasti)

Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Ramon G. Leon ◽  
Allen D. Knapp ◽  
Micheal D. K. Owen

Common waterhemp, giant foxtail, and velvetleaf seed germination in response to temperature was studied with a two-way thermogradient plate. Seeds were maintained under dark and wet conditions at 4 C for 12 wk, and velvetleaf seeds were scarified before the experiments were conducted. The seeds were germinated at 25 different temperature treatments. Minimum and optimum temperatures for velvetleaf germination were approximately 8 and 24 C, respectively. Temperature alternation did not affect the germination of this species. The minimum germination temperature was 10 C for common waterhemp and 14 C for giant foxtail. The optimum germination of giant foxtail occurred at approximately 24 C, but common waterhemp optimum germination was variable depending on temperature alternation. Increased amplitude of the diurnal temperature alternation increased percent germination of these two species, and this was more evident at lower temperatures. In the case of common waterhemp, the temperature required to reach specific germination percentages was reduced by increasing the amplitude of the temperature alternation.

2007 ◽  
Vol 25 (2) ◽  
pp. 105-108
Author(s):  
Daniel S. Norden ◽  
Frank A. Blazich ◽  
Stuart L. Warren ◽  
David L. Nash

Abstract Seeds of seabeach amaranth (Amaranthus pumilus Raf.) stored at 4C (39F) for approximately 1 year (harvested September 2003) and freshly harvested seeds (October 2004) were soaked in November 2004 in solutions of the potassium (K) salt (K-salt) of gibberellin A3 (K-GA3) at 0, 100, 500, or 1000 mg/liter (ppm) for 24 hr in darkness. After treatment, seeds were germinated at 25C (77F) or at an 8/16-hr thermoperiod of 30/20C (86/68F) with daily photoperiods at each temperature of 0 (total darkness) or 16 hr. Germination was recorded every 3 days for 30 days. Stored and fresh seeds responded similarly. However, the 2003 seeds had greater viability (percent germination) and vigor (germinated faster) and these data are presented. Regardless of germination temperature and photoperiod, nontreated seeds [0 mg/liter (ppm) K-GA3] did not germinate. When germinated at 25C (77F) the response of seeds to K-GA3 treatment was linear for both photoperiods with significantly greater total (30-day) germination occurring in the dark for seeds treated with 100, 500, or 1000 mg/liter (ppm) K-GA3. At 25C (77F), the greatest total germination (84%) was observed for seeds treated with 1000 mg/liter (ppm) K-GA3 and maintained in darkness, whereas for seeds exposed to a 16-hr photoperiod, maximum germination was 72%. At 30/20C (86/68F) the response to K-GA3 was quadratic with maximum germination at predicted rates of 882 and 875 mg/liter (ppm) KGA3 (88 and 92%, respectively) for photoperiods of 0 and 16 hr, respectively. Treatment of nonstratified seeds of seabeach amaranth with K-GA3 removed physiological (embryo) dormancy and eliminates the need for stratification (moist-prechilling). Treatment also reduced sensitivity of the seeds to light, and appeared to broaden the range of temperatures for germination.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 423-425 ◽  
Author(s):  
Jason C. Fausey ◽  
Karen A. Renner

Controlled environment experiments were completed to determine the effect of temperature on giant foxtail and fall panicum germination, emergence, and growth. Giant foxtail seed germination decreased when exposed to a constant 30 C compared to 20 C. Germination also decreased in the alternating 20/30 C temperature regime when the hours of exposure to 30 C as compared to 20 C increased. Fall panicum required alternating temperatures of 14 C (9 h)/28 C (15 h) to germinate. Giant foxtail seed germination exceeded 60% 4 d after exposure to an alternating temperature of 7 C (9.4 h)/20 C (14.6 h). Conversely, fall panicum seed did not germinate at the 7 C (9.4 h)/20 C (14.6 h) temperature regime and required a minimum of 7 d exposure to alternating temperatures of 13 C (8.7 h)/26 C (15.3 h) for 88% of the seed to germinate. The greatest emergence of giant foxtail and fall panicum was from 1 cm and 1 to 2.5 cm, respectively. Less than 5% of the giant foxtail and fall panicum seed emerged from 7.5 cm. The growth of giant foxtail seedlings was five times greater than that of fall panicum at each temperature regime tested. Incorporation of this information into bioeconomic models could result in accurate predictions of weed germination for effective weed management strategies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chandrima Shyam ◽  
Amit J. Jhala ◽  
Greg Kruger ◽  
Mithila Jugulam

Abstract Common waterhemp emerges throughout the crop growing season in the Midwestern United States, and as a result, the seedlings are exposed to a wide range of temperature regimes. Typically, 2,4-D is used in the Midwest to control winter annual broad-leaf weeds before planting soybean and in an early post-emergence application in corn and sorghum; however, the evolution of 2,4-D-resistant common waterhemp in several Midwestern states may limit the use of 2.4-D for controlling this problem weed. Moreover, temperature is one of the crucial factors affecting weed control efficacy of 2,4-D. This research investigated the effect of temperature on efficacy of 2,4-D to control 2,4-D susceptible (WHS) and -resistant (WHR) common waterhemp. Do se-response of WHS and WHR to 2,4-D was assessed at two temperature regimes, high (HT; 34/20 °C, d/n) and low (LT; 24/10 °C, d/n). Whole plant dose response study indicated an increased level of 2,4-D resistance in WHR at HT compared to LT. Additional investigation of the physiological mechanism of this response indicated that both WHS and WHR common waterhemp plants rapidly metabolized 14C 2,4-D at HT compared to LT. In conclusion, a rapid metabolism of 2,4-D conferred increased level of resistance to 2,4-D in WHR at HT. Therefore, application of 2,4-D when temperatures are cooler can improve control of 2,4-D resistant common waterhemp.


Weed Science ◽  
1986 ◽  
Vol 34 (3) ◽  
pp. 462-466 ◽  
Author(s):  
S. Kent Harrison ◽  
Loyd M. Wax ◽  
Loren E. Bode

Experiments were conducted at Urbana, IL, in 1983 and 1984 to determine the effect of adjuvants, adjuvant rate, and carrier volume on postemergence weed control with bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] and sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one} in soybeans [Glycine max(L.) Merr. ‘Williams’]. Little difference was observed between a petroleum oil:emulsifier blend (83:17, v/v) (POC) and a soybean oil: emulsifier blend (85:15, v/v) (SBOC) in enhancing control of velvetleaf (Abutilon theophrastiMedik. # ABUTH) with 0.6 or 1.1 kg ai/ha bentazon. Application of bentazon in a carrier volume of 94 L/ha provided velvetleaf control equivalent to that applied in 187 L/ha. Increasing the adjuvant rate from 2.3 to 11.7 L/ha increased visible soybean injury but had no effect on velvetleaf control with bentazon. Control of giant foxtail (Setaria faberiHerrm. # SETFA) with 0.1 kg ai/ha sethoxydim was enhanced more by POC than by SBOC. Phytotoxicity of sethoxydim was not altered by changes in carrier volume or adjuvant rate under conditions of adequate soil moisture in 1983. Under limiting soil moisture in 1984, giant foxtail control with sethoxydim increased slightly when the adjuvant rate was increased from 4.6 to 11.7 L/ha, and carrier volume was increased from 47 to 187 L/ha.


Weed Science ◽  
1978 ◽  
Vol 26 (6) ◽  
pp. 594-596 ◽  
Author(s):  
R. S. Fawcett ◽  
F. W. Slife

Application of 112 to 336 kg/ha N as ammonium nitrate [NH4(NO−3)] failed to affect population numbers of common lambsquarters(Chenopodium albumL.), giant foxtail(Setaria faberiHerrm.), velvetleaf(Abutilon theophrastiMedic.), jimsonweed(Datura stramoniumL.), or redroot pigweed(Amaranthus retroflexusL.). Common lambsquarters seeds harvested from NO−3-treated plots were less dormant than control seeds. Seed germination in the laboratory increased from 3.0% for control seeds to 34.0% for seeds harvested from plots treated with 280 kg/ha N as NH4(NO−3). Nitrate concentration in common lambsquarters seeds increased as nitrogen fertilization increased. Seeds from nonfertilized plots contained 18.7 μg/g NO−3, while seeds from plots fertilized with 280 kg/ha N contained 126.3 μg/g. Adding exogenous NO−3to the germination medium brought the germination of most seed lots to a similar level, except for control seeds which germinated at a lower rate. In contrast to common lambsquarters, nitrogen fertilization did not greatly affect dormancy or NO−3accumulation in velvetleaf seeds. Exogenous NO−3failed to stimulate velvetleaf germination because dormant velvetleaf seeds did not imbibe.


Weed Science ◽  
1973 ◽  
Vol 21 (6) ◽  
pp. 517-520 ◽  
Author(s):  
R. G. Harvey

The relative phytotoxicities of 12 substituted dinitroaniline herbicides to soybeans [Glycine max(L.) Merr ‘Corsoy’], velvetleaf (Abutilon theophrastiMedic.), and either giant foxtail (Setaria faberiHerrm.) or foxtail millet [Setaria italica(L.) Beauv.] were compared under greenhouse and laboratory conditions. In these studies, dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) was most toxic to each species. Dinitramine, trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), and BAS-3921 H [N-propyl-N-(2-chloroethyl)-α,α,α-trifluoro-2,6-dinitro-p-toluidine] were most inhibitory of soybean shoot growth, while oryzalin (3,5-dinitro-N4,N4-dipropyl-sulfanilamide), dinitramine, and BAS-3921 H were most inhibitory of root growth. Similarly, dinitramine, oryzalin, nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline], and BAS-3921 H inhibited velvetleaf shoot growth; and oryzalin, dinitramine, chlornidine [2,6-dinitro-N,N-di(2-dichloroethyl)-p-toluidine], nitralin, and GS-39985 (N-n-propyl-N-tetrahydrofurfuryl-4-trifluoromethyl-2,6-dinitroaniline) reduced root growth. All of the herbicides except oryzalin and nitralin inhibited foxtail millet shoot growth, while all of the herbicides reduced root growth.


Weed Science ◽  
2008 ◽  
Vol 56 (6) ◽  
pp. 834-840 ◽  
Author(s):  
Brian J. Schutte ◽  
Adam S. Davis ◽  
Karen A. Renner ◽  
John Cardina

Weed Science ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 256-259 ◽  
Author(s):  
Barbara M. Biniak ◽  
Richard J. Aldrich

The potential of preventing seed production and reducing seed viability of weeds that commonly grow taller than soybeans [Glycine max(L.) Merr. ‘Williams 82’] was evaluated. Chlorflurenol (2-chloro-9-hydroxy-9H-fluorene-9-carboxylic acid), chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide}, and glyphosate [N-(phosphonomethyl)glycine] were evaluated against sparse stands of velvetleaf (Abutilon theophrastiMedik. # ABUTH) and giant foxtail (Setaria faberiHerrm. # SETFA) growing in soybeans. Simulated-roller applications of all three herbicides significantly reduced seed production and germination of both weeds, although glyphosate was more effective than were the other two. Applications during early flowering of velvetleaf and early heading of giant foxtail reduced seed production more than later applications when some seeds were present. With the early application of glyphosate, 99% prevention of velvetleaf and 96% prevention of giant foxtail seed production were attained. With the early glyphosate application, germination of seeds produced was reduced by 50% in velvetleaf and by 95% in giant foxtail. Soybean yields were not reduced by either glyphosate or chlorflurenol but were drastically reduced by chlorsulfuron.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 558e-558
Author(s):  
Beyoung-han Yoon ◽  
Harvey J. Lane ◽  
B. Greg Cobb

Pansy (Viola × wiffrockiana cv. Majestic Giant Blue Shades and Crystal Bowl Sky Blue) seeds were primed in various salt sololions at -1.0 MPa for 3, 6 or 9 days at 23C to determine if priming could overcome thermoinhihition at high temperatures (30C and above). Salt solutions tested were KNO3, KCl, NaCl, MgCl2, Na2SO4, Na2HPO4, K2HPO4 and CaCl2, with polyethylene glycol (PEG) serving as a comparison non-salt solution. Total percent germination (G) of non-primed seeds decreased significantly for both cultivars as germination temperature increased from 25C to 35C. Total seed germination and time to 50% germination (TS,) varied widely among the different priming solutions, with all solutions decreasing Tso as compared to non-primed seeds. Seeds primed with PEG for 6 and 9 days, however, germinated during the priming process and were not further examined. Priming did not significantly improve total percent germination versus non-primed seed at 25C. Seeds that had the best G and T50 at temperatures at or above 30C were those primed for 3 days with CaCl2 (for `Crystal Bowl' there was a 40% increase in G at 35C), and MgCl2 (for `Majestic Giant' there was a 15% increase in G at 35C).


Sign in / Sign up

Export Citation Format

Share Document