Impact ofCeutorhynchus liturafeeding on root carbohydrate levels in Canada thistle (Cirsium arvense)

Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 628-633 ◽  
Author(s):  
Gary L. Hein ◽  
Robert G. Wilson

Canada thistle is a serious perennial weed found throughout the northern regions of the United States and Canada. The weevil,Ceutorhynchus litura(F.), was first released in Canada in 1965 as a potential biological control agent for Canada thistle; however, its impact as a control agent has been sporadic. The objective of this study was to characterizeC. lituraimpacts on the carbohydrate profile in Canada thistle roots through the growing season and to evaluate the potential for this biological control agent in causing stress to Canada thistle. Field plots, infested withC. litura, were established and extensively sampled forC. liturainfestations. By samplingC. litura–damaged and undamaged Canada thistle shoots–roots through the season, we were able to establish the profile of free sugars and fructans in the roots and compare these levels to the presence and extent of insect damage. Levels of all free sugars and fructans were consistently found to be depressed in roots fromC. litura–damaged shoots early in the summer during and shortly after the larval feeding period.Ceutorhynchus liturafeeding in Canada thistle shoots appears to disrupt the movement of photoassimilates from leaves to roots. Late-season levels of free sugars and fructans indicate that roots do recover from these depressed levels, and in several instances, significant overcompensation occurred in the damaged roots. Measurement of free sugars and fructans to identify sublethal impacts of control tactics may allow the strategic combining of complementary tactics to maximize the impact of stresses on Canada thistle.

2016 ◽  
Vol 9 (2) ◽  
pp. 78-88 ◽  
Author(s):  
A. Mohammadi-Khoramabadi ◽  
H. Alipanah ◽  
S. Belokobylskij ◽  
M.R. Nematollahi

Summary Prosopis farcta (Fabaceae) is a native and common perennial weed plant in Iran. In search of environmental-friendly control methods against P. farcta, we discovered the seed feeder moth Nephopterygia austeritella (Lepidoptera; Pyralidae) in central Iran and studied its bioecology for the first time from 2008 through 2009. Infestation pattern, larval feeding behaviour, developmental period, seasonal occurrence and the adverse impact of the moth on the reproductive organs of P. farcta were investigated. Diagnostic morphological characters of the fifth larval instar of N. austeritella are provided. Two gregarious ectoparasitoids were reared and identified as Apanteles subcamilla and Phanerotoma leucobasis (Hymenoptera: Braconidae). Mortality rates of the larvae were 3.03 and 13.44% in 2008 and 2009, respectively. Larvae destroyed 29.6-38.4% of the pods of their host plants. The potential of N. austeritella as an efficient biological control agent in IPM programs against P. farcta is discussed.


Author(s):  
Khalid S. Alshallash Khalid S. Alshallash

In four glasshouse experiments, the effectiveness of the adult green dock beetle Gastrophysa viridula (Coleoptera: Chrysomelidae), at the effective number of applied individuals, for use as a biological control agent of curled dock, Rumex crispus (Polygonaceae) were studied. The feeding of the beetle was investigated at four different numbers of beetle (0, 1, 2, 3) and at four seedling growth stages of the plant, defined by the average of leaf area per plant (1-1.22 , 2-4.45, 3-11.56, and 4-71.52 cm2/plant). Grazing by one, two or three dock beetles did not result in a significant reduction in dock dry weight or shoot numbers at the youngest growth stage. However, both at later seedling growth stages were significantly affected (P ? 0.0001), at any beetles number. The increase of beetle numbers caused nonsignificant increased effect, in some trials, confirming the impact of a single beetle. Three months after beetle grazing, dock seedlings of first, second and third growth stages were not able to regrow, however, some plants at the 4th growth stage, re-emerged. This suggested that the highest effect of beetle's feeding occurs on the early seedling stages. Statistical analysis showed a positive correlation (0.77) between dry weight and shoot number at all the four seedling growth stages, thus confirming the impact of the beetle on both the dry weight and shoot numbers. Combining beetle grazing with other control methods at older dock seedling stages could, therefore, provide better suppression


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander M. Gaffke ◽  
Sharlene E. Sing ◽  
Tom L. Dudley ◽  
Daniel W. Bean ◽  
Justin A. Russak ◽  
...  

Abstract The northern tamarisk beetle Diorhabda carinulata (Desbrochers) was approved for release in the United States for classical biological control of a complex of invasive saltcedar species and their hybrids (Tamarix spp.). An aggregation pheromone used by D. carinulata to locate conspecifics is fundamental to colonization and reproductive success. A specialized matrix formulated for controlled release of this aggregation pheromone was developed as a lure to manipulate adult densities in the field. One application of the lure at onset of adult emergence for each generation provided long term attraction and retention of D. carinulata adults on treated Tamarix spp. plants. Treated plants exhibited greater levels of defoliation, dieback and canopy reduction. Application of a single, well-timed aggregation pheromone treatment per generation increased the efficacy of this classical weed biological control agent.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 226 ◽  
Author(s):  
Dirk Babendreier ◽  
Min Wan ◽  
Rui Tang ◽  
Rui Gu ◽  
Justice Tambo ◽  
...  

The impact and sustainability of two interventions that have been formulated to introduce integrated pest management (IPM) into rice and maize crops in Southwestern China, Laos, and Myanmar between 2011 and 2016, and were assessed at the end of 2017. From 22 Trichogramma rearing facilities established during the interventions, 11 were still producing substantial quantities of biocontrol agents 1.5 years after project support had ended, while seven had stopped operations completely, and four were doing stock rearing only. Through the implementation of biological control-based IPM, slightly higher yields were achieved in maize and rice (4–10%), when compared to control farmers, but the difference was not statistically significant. However, the use of pesticides nearly halved when farmers started using Trichogramma egg-cards as a biological control agent. Support from either public or private institutions was found to be important for ensuring the sustainability of Trichogramma rearing facilities. Many of the suggested IPM measures were not adopted by smallholder farmers, indicating that the positive impacts of the interventions mostly resulted from the application of Trichogramma biological control agents. The following assessment suggests that further promotion of IPM adoption among farmers is needed to upscale the already positive effects of interventions that facilitate reductions in synthetic pesticide use, and the effects on sustainable agricultural production of rice and maize in the target area more generally.


2018 ◽  
Vol 65 ◽  
pp. 111-130 ◽  
Author(s):  
Fatemeh Ganjisaffar ◽  
Elijah J. Talamas ◽  
Marie-Claude Bon ◽  
Brian V. Brown ◽  
Lisa Gonzalez ◽  
...  

TrissolcushyalinipennisRajmohana & Narendran is an Old World egg parasitoid ofBagradahilaris(Burmeister). Its potential as a classical biological control agent in the United States has been under evaluation in quarantine facilities since 2014. A survey of resident egg parasitoids using fresh sentinelB.hilariseggs in Riverside, California, revealed thatT.hyalinipennisis present in the wild. Four cards with parasitized eggs were recovered, from which one yielded a single liveT.hyalinipennisand two unidentified dead wasps (Scelionidae), and three yielded twenty liveTrissolcusbasalis(Wollaston) and one dead wasp. Subsequently, samples from Burbank, California, collected with a Malaise trap as part of the BioSCAN project, yielded five females ofT.hyalinipennis. It is presumed that the introduction ofT.hyalinipennisto this area was accidental. Surveys will be continued to evaluate the establishment ofT.hyalinipennisas well as the presence of other resident parasitoid species.


Zootaxa ◽  
2009 ◽  
Vol 2083 (1) ◽  
pp. 1-18 ◽  
Author(s):  
I. K. LOPATIN ◽  
A. S. KONSTANTINOV

Two new genera from China (Taumaceroides Lopatin and Yunnaniata Lopatin) and 11 new species (Smaragdina quadrimaculata Lopatin, S. oblongum Lopatin, Hyphaenia volkovitshi Lopatin, Arthrotus daliensis Lopatin, Taumaceroides sinicus Lopatin, Yunnaniata konstantinovi Lopatin, Calomicrus yunnanus Lopatin, C. minutissimus Lopatin, Hermaeophaga belkadavi Konstantinov, H. dali Konstantinov from China, and H. korotyaevi Konstantinov from South Korea) are described and illustrated. A key to Hermaeophaga species of Eurasia is presented. Since Hermaeophaga dali was collected feeding on Paederia foetida L. (Rubiaceae), which is an invasive noxious weed in the United States, this species has potential as a biological control agent of this weed.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Thao D. Tran ◽  
Celia Del Cid ◽  
Robert Hnasko ◽  
Lisa Gorski ◽  
Jeffery A. McGarvey

ABSTRACT Listeria monocytogenes is a foodborne pathogen that causes high rates of hospitalization and mortality in people infected. Contamination of fresh, ready to eat produce by this pathogen is especially troubling because of the ability of this bacterium to grow on produce under refrigeration temperatures. In this study, we created a library of over 8,000 plant phyllosphere-associated bacteria and screened them for the ability to inhibit the growth of L. monocytogenes in an in vitro fluorescence-based assay. One isolate, later identified as Bacillus amyloliquefaciens ALB65, was able to inhibit the fluorescence of L. monocytogenes by >30-fold in vitro. B. amyloliquefaciens ALB65 was also able to grow, persist, and reduce the growth of L. monocytogenes by >1.5 log CFU on cantaloupe melon rinds inoculated with 5 × 103 CFU at 30°C and was able to completely inhibit its growth at temperatures below 8°C. DNA sequence analysis of the B. amyloliquefaciens ALB65 genome revealed six gene clusters that are predicted to encode genes for antibiotic production; however, no plant or human virulence factors were identified. These data suggest that B. amyloliquefaciens ALB65 is an effective and safe biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons and possibly other types of produce. IMPORTANCE Listeria monocytogenes is estimated by the Centers for Disease Control and Prevention and the U.S. Food and Drug Administration to cause disease in approximately 1,600 to 2,500 people in the United States every year. The largest known outbreak of listeriosis in the United States was associated with intact cantaloupe melons in 2011, resulting in 147 hospitalizations and 33 deaths. In this study, we demonstrated that Bacillus amyloliquefaciens ALB65 is an effective biological control agent for the reduction of L. monocytogenes growth on intact cantaloupe melons under both pre- and postharvest conditions. Furthermore, we demonstrated that B. amyloliquefaciens ALB65 can completely inhibit the growth of L. monocytogenes during cold storage (<8°C).


Sign in / Sign up

Export Citation Format

Share Document