Genetic Variation in Invasive Populations of Yellow Toadflax (Linaria vulgaris) in the Western United States

Weed Science ◽  
2008 ◽  
Vol 56 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Sarah M. Ward ◽  
Scott D. Reid ◽  
Judy Harrington ◽  
Jason Sutton ◽  
K George Beck

Intraspecific genetic variation may contribute significantly to invasiveness and control problems, but has been characterized to date in relatively few invasive weed species. We examined 56 intersimple sequence repeat (ISSR) loci in 220 individuals from 11 invading populations of yellow toadflax sampled across five western states. All populations showed high levels of genetic diversity. Estimated values for Shannon's diversity measure ranged from 0.217 to 0.388, and for expected heterozygosity from 0.178 to 0.260. Nei's total gene diversity index (HT), on the basis of all individuals across all populations, was 0.267. Partitioning of genetic variance using analysis of molecular variance revealed 1.7% of genetic variation among regional population groups, 29.1% among populations within groups, and 69.2% within populations, consistent with expectations for an outcrossing species but suggesting little geographic differentiation. Pairs of adjacent individuals identical at all ISSR loci that appeared to be ramets of a single clone were detected in only one population. This indicates that patch expansion in yellow toadflax is driven more by sexual reproduction via seed than by rhizomatous clonal spread, at least at the spatial scale of sampling for this study. Eight populations had significant values for Mantel's R at P = 0.05, suggesting some fine-scale positive genetic structuring, possibly from restricted gene flow. Population clustering on the basis of Nei's genetic distance between populations and unweighted pair group method with arithmetic mean did not reflect geographic location. It is likely that multiple introductions of this species have occurred across the Intermountain West, followed by extensive genetic recombination. High levels of genetic diversity within yellow toadflax populations pose management challenges, as already seen in reports of variable response to herbicide application and limited impacts of biocontrol agent releases.

2008 ◽  
Vol 5 (1) ◽  
pp. 67-72
Author(s):  
Shen Cheng-Wen ◽  
Huang Yi-Huan ◽  
Huang Jian-An ◽  
Luo Jun-Wu ◽  
Liu Chun-Lin ◽  
...  

AbstractGenetic diversity and genetic variation of 240 adult plants of four tea populations in Hunan – Camellia sinensis var. sinensis, C. sinensis var. assamica cv. Duntsa, C. ptilophylla and C. sinensis var. assamica cv. Jianghua – were studied by rapid amplification of polymorphic DNA (RAPD) markers. The results showed 226 loci using 21 random primers (10 bp), of which 201 (88.9%) were polymorphic. The genetic diversity analysis indicated that Shannon's index was 0.43; 74.7% of which was within-population genetic diversity while 25.3% was among-population variation. The gene diversity indexes of total populations (HT), within populations (HS) and among populations (HST) were, respectively, 0.37, 0.28 and 0.09. The coefficient of gene differentiation (GST) among populations was 0.23, indicating a 76.7% variation within populations and 23.3% among populations. These results displayed a rich within-population genetic variation, as in Shannon's diversity index. Interpopulation gene flow (Nm) was 0.74, which indicates the limited genetic exchange between populations.


2008 ◽  
Vol 133 (3) ◽  
pp. 374-382 ◽  
Author(s):  
Matthew Chappell ◽  
Carol Robacker ◽  
Tracie M. Jenkins

Despite the ecologic and economic importance of native deciduous azaleas (Rhododendron L. section Pentanthera G. Don), our understanding of interspecific variation of North American deciduous azalea species comes principally from morphologic studies. Furthermore, little is known concerning intraspecific or interpopulation genetic variation. With ever-increasing loss and fragmentation of native azalea habitat in the eastern United States due to anthropogenic activity, it is imperative that an understanding of natural genetic variation among and within species and populations is acquired. The present study addresses questions of genetic diversity through the use of amplified fragment length polymorphism (AFLP) analysis. Twenty-five populations of seven species of native azalea were analyzed using three primer pairs that amplified a total of 417 bands. Based on analysis of molecular variance (AMOVA) and estimates of Nei's coefficients of gene diversity (H S, H T, and G ST), the majority of variation found in deciduous azalea occurs within populations. Variation both among species and among population was low, likely the effect of common ancestry as well as frequent introgression among members (and populations) of section Pentanthera. The latter was evident in four populations of R. prunifolium (Small) Millais and R. canescens (Michaux) Sweet that were highly related to R. austrinum (Small) Rehder and R. viscosum (L.) Torrey, respectively. Despite these outliers, most populations were grouped into species based on Nei's unbiased genetic distances viewed as an unweighted pair group method with arithmetic mean (UPGMA) phenogram. The significance of these results is discussed in relation to breeding in section Pentanthera.


2020 ◽  
Author(s):  
Zhang Danchun ◽  
Xiaoxia Ding ◽  
Wan Guan ◽  
Juan Huang ◽  
He Su ◽  
...  

Abstract Background: The Amomum villosum has the situation that it is inferior and other other varieties are used as A. villosum in the market. In order to develop and utilize the genuine medicinal materials A. villosum, this experiment aims to carry out the identification and research of variety of the A. villosum and analyze its genetic diversity, constructing the DNA barcode database of the genuine medicinal materials A. villosum in Guangdong Province and providing recommendations for populations planting, which will be critical to the further research of A. villosum. (2) Methods: A total of 141 samples of A. villosum were analyzed by DNA barcoding to construct DNA barcode database. The genetic diversity of A. villosum sampled from 7 populations in Guangdong Province was detected based on ISSR molecular marker technology. (3) Results: The success rates of PCR amplification and sequencing of five barcodes of A. villosumwas rbcL> ITS > ITS2 >psbA-trnH>matK. 141 samples of A. villosum from 7 populations in Guangdong Province were used to construct a reference DNA barcode database containing 531 sequences. The results of genetic diversity were as follow, the number of alleles Na ranged from 1.2879 to 1.7121, the effective number of alleles Ne ranged from 1.1848 to 1.4240, the gene diversity index (H) ranged from 0.2536 to 0.1117, and the Shannon index (I) ranged from 0.3816 to 0.1658, whichindicatedthegenetic diversity of A.Villosum was rich. The total genetic diversity among the 7 populations (Ht) was 0.3299, the genetic diversity within the populations (Hs) was 0.1819, and the gene differentiation coefficient (Gst) was 0.4487. AMOVA showed that the genetic variation within the populations and the genetic variation between the populations accounted for 68.74% (P<0.05) and 31.26% (P<0.05) respectively, indicating that the genetic variation of A. villosum was mainly within the populations. The gene flow Nm was 0.6143.The genetic distance of the 7 populations was 0.0844 - 0.3347, and the genetic identity was 0.7156 - 0.9191, confirming that the genetic relationship of each population was relatively close. The 7 populations were significantly grouped in the cluster analysis and the genetic level of each population from high to low was as follow: ZY (National Highway Roadside) > ZJD (Zhongjiaodong) > GY (Geopark) >MM (Dianbai) > YC (Dadong Village) > XFC (Xingfu Village) > TK (Tankui Village). There was no correlation between the geographic distance and the degree of genetic differentiation among populations. Conclusion: By amplifying and sequencing five barcodes of ITS2, psbA-trnH, ITS, matK and rbcL, a reference DNA barcode database of A. villosum with 531 sequences was constructed. The results of genetic diversity showed that it is necessary to take appropriate in situ protection measures for the populations of A. villosum in Yangchun City and increase the genetic exchange between populations to improve the genetic diversity of A. villosum.


2019 ◽  
Vol 47 (4) ◽  
pp. 1308-1315
Author(s):  
Peng-Li ZHENG ◽  
Jian-Ru CHENG ◽  
Long-Qing CHEN ◽  
Ming-Qin ZHOU

Investigation on the level and pattern of genetic diversity of 10 natural populations of the endangered species Fraxinus hupehensis using inter-simple sequence repeat (ISSR) markers was crucial for understanding the structure of the population and assessing the best genetic protection strategies. A total of 180 polymorphic bands with the polymorphic rate of 100.00% were amplified by 14 primers. The genetic diversity at population level (Percentage of polymorphic loci, PPL=64.06; Nei’s gene diversity index, h=0.1519; Shannon’s information index, I=0.2434) was lower than that at species level (PPL= 100.00%, h=0.1833, I=0.3041). Analysis of molecular variance (AMOVA) demonstrated the low level of the genetic variation occurred between the populations (16.05%). This also can be corroborated by the gene flow (Nm 2.424) and the coefficient of gene differentiation (Gst=0.1710) among populations. Cluster analysis based on the unweighted pair group method with arithmetic averages (UPGMA) revealed four groups for 10 populations according to Nei’s genetic identity and seven categories for the 196 individuals according to SM values. Furthermore, the endangered mechanism and genetic structure of F. hupehensis were discussed, and appropriate targeted protection measures were proposed based on these findings.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Weed Science ◽  
2010 ◽  
Vol 58 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Aldo Merotto ◽  
Marie Jasieniuk ◽  
Albert J. Fischer

Basic factors contributing to the rapid evolution and broad distribution of acetolactate synthase (ALS)-inhibiting herbicide resistance in smallflower umbrella sedge L. have not yet been investigated. The objectives of this study were to examine patterns of cross-resistance to ALS herbicides and genetic diversity within and among smallflower umbrella sedge populations in California rice fields to provide insight into the processes contributing to resistance spread. Twelve different patterns of herbicide cross-resistance were found across the 56 populations sampled. The frequency of populations with at least one resistant individual in the North, Central and South Sacramento Valley, and the San Joaquin Valley were 76, 86, 67, and 50%, respectively. Analysis of the genetic diversity of 29 populations using 73 sequence-related amplified polymorphism molecular markers revealed little genetic diversity within populations, with estimates of Nei's gene diversity index,h, ranging from 0 to 0.049, and Shannon's information index (I) ranging from 0 to 0.079. Hierarchical analyses of molecular variance indicated that the majority of genetic variation was partitioned among populations, rather than within populations or among regional groups. No isolation by distance was evident. Unweighted pair group method with arithmetic averages analysis indicated that population clustering was not region specific. The results suggest that resistance to ALS-inhibiting herbicides in smallflower umbrella sedge populations from California rice fields appears to have evolved independently multiple times rather than spread from a single population where resistance originated. Consequently, prevention and management of smallflower umbrella sedge in California rice fields should emphasize in-field strategies that focus on decreasing the selection pressure caused by ALS-inhibiting herbicides.


2015 ◽  
Vol 140 (2) ◽  
pp. 120-128
Author(s):  
Amanda J. Hershberger ◽  
Tracie M. Jenkins ◽  
Carol Robacker

Despite the ecologic and ornamental potential of southeastern U.S. native Spigelia, little is known about the intraspecific or the interpopulation genetic variation. The southeastern U.S. native Spigelia habitat is becoming more and more fragmented as a result of human activity, making it imperative to gain an understanding of natural genetic variation among and within species and populations for the purpose of obtaining variability for plant breeding and preserve the genetic variability in Spigelia. Therefore, the objective of this study was to use amplified fragment length polymorphism analysis to determine interspecific and intraspecific genetic variation and to evaluate gene flow. Thirteen populations of two species of native Spigelia, S. marilandica (SM), S. gentianoides var. gentianoides (SGG), and S. gentianoides var. alabamensis (SGA), were analyzed using four primer pairs that amplified a total of 269 bands. Based on analysis of molecular variance and estimates of Nei’s coefficients of gene diversity (percentage of polymorphic loci, average genetic diversity within populations, average genetic diversity within species, and proportion of species genetic diversity attributed to among population variation), the majority of variation found in Spigelia occurs within populations. Both among-species and among-population variation was low, likely the effect of common ancestry as well as relatively frequent introgression among individuals (and populations) of Spigelia. When all individuals were evaluated using Nei’s unbiased genetic distances and viewed as a unweighted pair group method with arithmetic mean phenogram, three main groups were shown, one with two samples of SGG from one population, one with 13 individuals from both SGG populations used in this study, and one with all of the SM, SGA, and remaining SGG individuals. Further evaluation using STRUCTURE software showed introgression between populations and species, although all allele clusters have not entirely introgressed into all populations. The significance of these results is discussed in relation to breeding in Spigelia.


2005 ◽  
Vol 53 (5) ◽  
pp. 437 ◽  
Author(s):  
K. J. Taylor ◽  
A. J. Lowe ◽  
R. J. Hunter ◽  
T. Ridgway ◽  
P. M. Gresshoff ◽  
...  

Nothofagus moorei (F.Muell.) Krasser has a disjunct and narrow distribution in south-eastern Australian cool temperate rainforest. To assess the conservation-genetic priorities for this species, the genetic diversity of 20 populations sampled from the largest remnant patches at northern and southern distributional extremes, the McPherson and Barrington ranges (a total of 146 individuals), was investigated by using inter simple sequence repeats (ISSR). Regeneration in northern regions of N. moorei has been documented to be predominantly by vegetative means, but our results indicate little evidence of clonality outside the multi-stemmed rings of trees. In addition, genetic diversity was considerably higher in the northern (McPherson, h = 0.1613) than in the southern range (Barrington, h = 0.1159), and genetic differentiation was significantly positively correlated with geographic distance in the former region, but not the latter. Total intraspecific variation was moderate, as measured by Shannon’s diversity index, I = 0.2719, and Nei’s gene diversity, h = 0.1672, and is considered at the high end of spectrum for estimates of narrow endemic species. An analysis of molecular variation indicated that the majority of genetic variation is partitioned among individuals within population (60%; P < 0.001), rather than among populations within regions (10%; P < 0.001). However, a large and significant component of the measured diversity was partitioned between northern and southern regions (29%; P < 0.001). Several hypotheses are outlined to explain these differences and management implications are discussed. However, given the narrow range, poor dispersal mechanism and restriction to cool temperate rainforest, the continued existence of N. moorei is most threatened by environmental instability and habitat loss resulting from global climate change. In this context the northern regions of the species are most at risk and extinction of such populations would lead to a significant loss of genetic variation for the species as a whole.


Author(s):  
Rui Zang ◽  
Ying Zhao ◽  
Kangdi Guo ◽  
Kunqi Hong ◽  
Huijun Xi ◽  
...  

AbstractBitter gourd wilt caused by Fusarium oxysporum f. sp. momordicae (FOM) is a devastating crop disease in China. A total of 173 isolates characteristic of typical Fusarium oxysporum with abundant microconidia and macroconidia on white or ruby colonies were obtained from diseased plant tissues. BLASTn analysis of the rDNA-ITS of the isolates showed 99% identity with F. oxysporum species. Among the tested isolates, three were infectious toward tower gourd and five were pathogenic to bottle gourd. However, all of the isolates were pathogenic to bitter gourd. For genetic differences analysis, 40 ISSR primers were screened and 11 primers were used for ISSR-PCR amplification. In total, 127 loci were detected, of which 76 were polymorphic at a rate of 59.84%. POPGENE analysis showed that Nei’s gene diversity index (H) and Shannon’s information index (I) were 0.09 and 0.15, respectively, which indicated that the genetic diversity of the 173 isolates was low. The coefficient of gene differentiation (Gst = 0.33 > 0.15) indicated that genetic differentiation was mainly among populations. The strength of gene flow (Nm = 1.01 > 1.0) was weak, indicating that the population differentiation caused by gene drift was blocked to some degree. The dendrogram based on ISSR markers showed that the nine geographical populations were clustered into two groups at the threshold of genetic similarity coefficient of 0.96. The Shandong and Henan populations were clustered into Group I, while the Guangdong, Hainan, Guangxi, Fujian, Jiangxi, and Hubei populations constituted Group II. Results of the genetic variation analysis showed that the Hunan and Guangxi populations had the highest degree of genetic differentiation, while the Hubei population had the lowest genetic differentiation. Our findings enrich the knowledge of the genetic variation characteristics of FOM populations with the goal of developing effective disease-management programs and resistance breeding programs.


2019 ◽  
Vol 11 (3) ◽  
pp. 467-474
Author(s):  
Bolaji Zuluqurineen SALIHU ◽  
Olamide Ahmed FALUSI ◽  
Adeyinka Olufemi ADEPOJU ◽  
Ibrahim Wasiu AROLU ◽  
Oladipupo Yusuf DAUDU ◽  
...  

Castor oil plant (Ricinus communis L.) is an important oil crop with little research attention in Nigeria. In the present research, extent of genetic diversity among 20 Nigerian castor genotypes was determined using morphological descriptors and molecular markers. The genotypes were laid out on a randomized complete block design with three replicated plots. Molecular genotyping of the genotypes was carried out using genomic Simple Sequence Repeats (SSR). The genotypes revealed high divergence in seed colour, seed shape, seed mottle, seed caruncle and seed sizes. Seedling establishment varied from 70.18% (in Acc. 006) to 93.25% (Acc. 001) with average mean of 81.53%. Raceme length ranged from 15.90 cm to 29.54 cm with population mean of 20.80 cm. The highest seed yield (1222.98 kg/ha) was recorded in Acc. 001 and the least (611.46 kg/ha) was observed in Acc. 006. Seed oil content varied between 32.15% in Acc. 042 and 54.03% in Acc. 006. Agglomerative cluster dendrogram constructed from morphological data showed random distribution of the genotypes into three cluster groups irrespective of the sources/collection points. The genetic diversity based on SSR Marker Analysis revealed high average expected heterozygosity (0.74), Polymorphic information content (0.68), Nei’s gene diversity index (0.72) and Shannon's Information index (1.43). The dendrogram constructed from molecular data grouped the twenty genotypes into three groups at coefficient of 0.34. From these findings, it showed that the twenty genotypes evaluated are divergent in nature and they could serve as good genetic material for castor breeding in Nigeria.


AGROFOR ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Miodrag DIMITRIJEVIĆ ◽  
Sofija PETROVIĆ ◽  
Borislav BANJAC ◽  
Goran BARAĆ

New challenges that food production is facing, requires novel approach inagricultural strategy. The scissors of growing demand for food and the limits of theEarth's resources are forcing plant breeders to run for the new borders, utilizing allthe available genetic variation in order to create fruitful and economically soundcultivars. Aegilops sp. (Poaceae) is a potential source of genetic variation for wheatimprovement. RAPD marker analysis was used in order to distinguish and evaluatedifferent genotypes of Aegilops sp. population samples from the collectiongathered during few years’ expeditions in South Adriatic, along the coastal, littoraland the inland parts of Montenegro. Ten randomly amplified polymorphic DNAmarkers (RAPDs) were tested: OPA-05, OPA-08, OPB-06, OPA-02, OPA-07,OPA-25, OPB-07, OPB-18, OPC-06, OPC-10 to examine genetic structuring on 18samples of 6 populations of different Aegilops sp. According to global AMOVA,75% of total gene diversity was attributable mostly to diversity within population(ΦPT =0.205 p=0.001), indicating that the groups of studied goat grass populationswere seemingly to differing genetically. In contrast, 25% of the variation camefrom variation among populations. According to PCoA, the distribution of 18 goatgrass accessions by Principal Coordinate Analysis shows 3 distinct groups. PCoaxis 1, PCo axis 2, and PCo axis 3 account for 20.8%, 18.2% and 14.1% of thevariation, respectively. The results showed that RAPD markers could be aconvenient tool for investigating genetic variation and for detecting geneticstructuring of populations. Genetic variability formed under natural selection wasentrenched.


Sign in / Sign up

Export Citation Format

Share Document