Glyphosate Resistance Does Not Affect Palmer Amaranth (Amaranthus palmeri) Seedbank Longevity

Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 283-288 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
Theodore M. Webster ◽  
A. Stanley Culpepper

A greater understanding of the factors that regulate weed seed return to and persistence in the soil seedbank is needed for the management of difficult-to-control herbicide-resistant weeds. Studies were conducted in Tifton, GA to (1) evaluate whether glyphosate resistance, burial depth, and burial duration affect the longevity of Palmer amaranth seeds and (2) estimate the potential postdispersal herbivory of seeds. Palmer amaranth seeds from glyphosate-resistant and glyphosate-susceptible populations were buried in nylon bags at four depths ranging from 1 to 40 cm for intervals ranging between 0 and 36 mo, after which the bags were exhumed and seeds evaluated for viability. There were no detectable differences in seed viability between glyphosate-resistant and glyphosate-susceptible Palmer amaranth seeds, but there was a significant burial time by burial depth interaction. Palmer amaranth seed viability for each of the burial depths declined over time and was described by exponential decay regression models. Seed viability at the initiation of the study was ≥ 96%; after 6 mo of burial, viability declined to 65 to 78%. As burial depth increased, so did Palmer amaranth seed viability. By 36 mo, seed viability ranged from 9% (1-cm depth) to 22% (40-cm depth). To evaluate potential herbivory, seed traps with three levels of exclusion were constructed: (1) no exclusion, (2) rodent exclusion, and (3) rodent and large arthropod exclusion. Each seed trap contained 100 Palmer amaranth seeds and were deployed for 7 d at irregular intervals throughout the year, totaling 27 sample times. There were seasonal differences in seed recovery and differences among type of seed trap exclusion, but no interactions. Seed recovery was lower in the summer and early autumn and higher in the late winter and early spring, which may reflect the seasonal fluctuations in herbivore populations or the availability of other food sources. Seed recovery was greatest (44%) from the most restrictive traps, which only allowed access by small arthropods, such as fire ants. Traps that excluded rodents, but allowed access by small and large arthropods, had 34% seed recovery. In the nonexclusion traps, only 25% of seed were recovered, with evidence of rodent activity around these traps. Despite the physically small seed size, Palmer amaranth is targeted for removal from seed traps by seed herbivores, which could signify a reduction in the overall seed density. To be successful, Palmer amaranth management programs will need to reduce soil seedbank population densities. Future studies need to address factors that enhance the depletion of the soil seedbank and evaluate how these interact with other weed control practices.

1990 ◽  
Vol 70 (3) ◽  
pp. 799-807 ◽  
Author(s):  
S. D. SPARROW ◽  
C. W. KNIGHT ◽  
J. S. CONN

Factors affecting seed survival of spring canola (Brassica campestris L. ’Tobin’), over two winters in the field at Delta Junction, Alaska were studied. In October, seeds were placed in polypropylene mesh envelopes and buried. The packets were exhumed the next spring and seed viability was determined. Factors studied included seed age, seed treatment, protection by snow-fence enclosures, burial depth, and spring retrieval date. During the first winter, survival of seeds near the soil surface until March was 65%, but many died during spring. During the second winter, seed viability in March was much lower than it had been in the previous March, but no significant mortality occurred during spring. Freshly harvested seeds generally survived better than seeds which had been stored for 1 yr. Seeds buried well below the soil surface and seeds placed inside snow-fence enclosures survived better than seeds placed near the soil surface outside enclosures. Results indicate that factors such as seed storage and protection from extreme temperatures and temperature fluctuations during late winter and early spring are important determinants of canola seed survival over winter. These factors could help explain why large populations of volunteer canola arise from seeds which have fallen from mature pods, whereas harvested, stored seeds planted during fall or early spring often produce poor stands in Alaska.Key words: Seed survival, seed mortality, seed germination, seed dormancy, seed overwintering, volunteer canola


2021 ◽  
pp. 1-8
Author(s):  
Jose H. S. de Sanctis ◽  
Stevan Z. Knezevic ◽  
Vipan Kumar ◽  
Amit J. Jhala

Abstract Glyphosate-resistant (GR) Palmer amaranth is a troublesome weed that can emerge throughout the soybean growing season in Nebraska and several other regions of the United States. Late-emerging Palmer amaranth plants can produce seeds, thus replenishing the soil seedbank. The objectives of this study were to evaluate single or sequential applications of labeled POST herbicides such as acifluorfen, dicamba, a fomesafen and fluthiacet-methyl premix, glyphosate, and lactofen on GR Palmer amaranth control, density, biomass, seed production, and seed viability, as well as grain yield of dicamba- and glyphosate-resistant (DGR) soybean. Field experiments were conducted in a grower’s field infested with GR Palmer amaranth near Carleton, NE, in 2018 and 2019, with no PRE herbicide applied. Acifluorfen, dicamba, a premix of fomesafen and fluthiacet-methyl, glyphosate, or lactofen were applied POST in single or sequential applications between the V4 and R6 soybean growth stages, with timings based on product labels. Dicamba applied at V4 or in sequential applications at V4 followed by R1 or R3 controlled GR Palmer amaranth 91% to 100% at soybean harvest, reduced Palmer amaranth density to as low as 2 or fewer plants m−2, reduced seed production to 557 to 2,911 seeds per female plant, and resulted in the highest soybean yield during both years of the study. Sequential applications of acifluorfen, fomesafen and fluthiacet premix, or lactofen were not as effective as dicamba for GR Palmer amaranth control; however, they reduced seed production similar to dicamba. On the basis of the results of this study, we conclude that dicamba was effective for controlling GR Palmer amaranth and reduced density, biomass, and seed production without DGR soybean injury. Herbicides evaluated in this study had no effect on Palmer amaranth seed viability.


2012 ◽  
Vol 26 (4) ◽  
pp. 832-838 ◽  
Author(s):  
Justin D. DeVore ◽  
Jason K. Norsworthy ◽  
Kristofor R. Brye

Glyphosate-resistant Palmer amaranth has become a major problem for cotton producers throughout much of the southern United States. With cotton producers relying heavily on glyphosate-resistant cotton, an alternative solution to controlling resistant Palmer amaranth is needed. A field experiment was conducted during 2009 and 2010 at Marianna, AR, in which a rye cover crop and no cover crop were tested in combination with deep tillage with the use of a moldboard plow and no tillage to determine the impact on Palmer amaranth emergence in cotton. To establish a baseline population, 500,000 glyphosate-resistant Palmer amaranth seeds were placed in a 2-m2area in the middle of each plot and incorporated into the soil, and emergence was evaluated five times during the season. In 2009, both tillage and the cover crop reduced Palmer amaranth emergence in cotton, but the combination of the two reduced emergence 85%. In the second year, only the cover crop reduced Palmer amaranth emergence in cotton, a 68% reduction. Cover crops and deep tillage will not eliminate glyphosate-resistant Palmer amaranth; however, use of these tools will likely reduce the risks of failures associated with residual herbicides along with selection pressure placed on both PRE- and POST-applied herbicides. Additional efforts should focus on the integration of the best cultural practices identified in this research with use of residual herbicides and greater focus on limiting Palmer amaranth seed production and reducing the soil seedbank.


2021 ◽  
pp. 1-14
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
Michael D. Boyette ◽  
...  

Abstract Lab and greenhouse studies were conducted to evaluate the effects of chemical treatments applied to Palmer amaranth seeds or gynoecious plants retaining seeds on seed germination and quality. Treatments applied to physiologically mature Palmer amaranth seed included acifluorfen, dicamba, ethephon, flumioxazin, fomesafen, halosulfuron, linuron, metribuzin, oryzalin, pendimethalin, pyroxasulfone, S-metolachlor, saflufenacil, trifluralin, and 2,4-D plus crop oil concentrate applied at 1 and 2× the suggested use rates from the manufacturer. Germination was reduced by 20% from 2,4-D, 15% from dicamba, and 13% from halosulfuron and pyroxasulfone. Dicamba, ethephon, halosulfuron, oryzalin, trifluralin, and 2,4-D decreased the average seedling length by at least 50%. Due to the observed effect of dicamba, ethephon, halosulfuron, oryzalin, trifluralin, and 2,4-D, these treatments were applied to gynoecious Palmer amaranth inflorescence at the 2× registered application rates to evaluate their effects on progeny seed. Dicamba decreased seed germination by 24%, whereas all other treatments were similar to the control. Crush tests showed seed viability was greater than 95%; thus, dicamba did not have a strong effect on seed viability. No treatments applied to Palmer amaranth inflorescence affected average seedling length; therefore, chemical treatments did not affect the quality of seeds that germinated.


2004 ◽  
Vol 39 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Rolando López ◽  
Russell F. Mizell ◽  
Peter C. Andersen ◽  
Brent V. Brodbeck

The efficiency of parasitism of Gonatocerus ashmeadi Girault and G. morrilli (Howard) (Hymenoptera: Myramidae) on glassy-winged sharpshooter, Homalodisca coagulata (Say) (Homoptera: Cicadellidae), eggs of varying age was documented. Excised leaves with H. coagulata eggs of age 1 to 9 d were presented to mated female parasitoids in Petri dishes as well as on intact foliage. Parasitism rates for both species were high with 3 females in Petri dishes parasitizing virtually all eggs in 3 egg masses, and 8 mated females finding and parasitizing almost all eggs from 5 egg masses in small shrubs of Ilex opaca cv cornuta. For both species, parasitism efficiency exceeded 95% within 24 h. Parasitism rates declined for older eggs (8 and 9 d) on excised leaves. Because this did not occur on live plant material, hardening of excised foliage likely contributed to lower rates of parasitism. No cases of superparasitism were observed: Overwintering of the parasitoids was examined by monitoring the fate of eggs of H. coagulata deposited in November. We documented the first case of H. coagulata overwintering as eggs under North Florida conditions. In addition, both G. ashmeadi and G. morrilli were able to overwinter as undeveloped larvae within parasitized eggs under similar conditions. Overwintering parasitoids took approximately 85 d for emergence, which slightly exceeded the minimum predicted for emergence by existing degree day models. Feeding experiments conducted with G. ashmeadi and G. morrilli as food sources are limited during winter/spring; however, our results confirmed that honeydew from Dialeurodes citri (Ashmead) (available in North Florida in late winter/early spring) significantly increased the longevity of both parasitoid species when compared to honey and water.


2017 ◽  
Vol 31 (4) ◽  
pp. 617-622 ◽  
Author(s):  
Lauren M. Schwartz-Lazaro ◽  
Jeremy K. Green ◽  
Jason K. Norsworthy

Harvest weed seed control is an alternative non-chemical approach to weed management that targets escaped weed seeds at the time of crop harvest. Relatively little is known on how these methods will work on species in the US. Two of the most prominent weeds in soybean production in the midsouthern US are Palmer amaranth and barnyardgrass. Typically, when crop harvesting occurs the weed seed has already either shattered or is taken into the combine and may be redistributed in the soil seedbank. This causes further weed seed spread and may contribute to the addition of resistant seeds in the seedbank. There is little research on how much seed is retained on different weed species at or beyond harvest time. Thus, the objective of this study was to determine the percentage of total Palmer amaranth and barnyardgrass seed production that was retained on the plant during delayed soybean harvest. Retained seed over time was similar between 2015 and 2016, but was significantly different between years for only Palmer amaranth. Seed retention did not differ between years for either weed species. Palmer amaranth and barnyardgrass retained 98 and 41% of their seed at soybean maturity and 95 and 32% of their seed one month after soybean maturity, respectively. Thus, this research indicates that if there are escaped Palmer amaranth plants and soybean is harvested in a timely manner, most seed will enter the combine and offer potential for capture or destruction of these seeds using harvest weed seed control tactics. While there would be some benefit to using HWSC for barnyardgrass, the utility of this practice on mitigating herbicide resistance would be less pronounced than that of Palmer amaranth because of the reduced seed retention or early seed shatter.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 446-456 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Bryan G. Young ◽  
Daniel B. Reynolds ◽  
William G. Johnson ◽  
...  

AbstractKnowledge of the effects of burial depth and burial duration on seed viability and, consequently, seedbank persistence of Palmer amaranth (Amaranthus palmeriS. Watson) and waterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] ecotypes can be used for the development of efficient weed management programs. This is of particular interest, given the great fecundity of both species and, consequently, their high seedbank replenishment potential. Seeds of both species collected from five different locations across the United States were investigated in seven states (sites) with different soil and climatic conditions. Seeds were placed at two depths (0 and 15 cm) for 3 yr. Each year, seeds were retrieved, and seed damage (shrunken, malformed, or broken) plus losses (deteriorated and futile germination) and viability were evaluated. Greater seed damage plus loss averaged across seed origin, burial depth, and year was recorded for lots tested at Illinois (51.3% and 51.8%) followed by Tennessee (40.5% and 45.1%) and Missouri (39.2% and 42%) forA. palmeriandA. tuberculatus, respectively. The site differences for seed persistence were probably due to higher volumetric water content at these sites. Rates of seed demise were directly proportional to burial depth (α=0.001), whereas the percentage of viable seeds recovered after 36 mo on the soil surface ranged from 4.1% to 4.3% compared with 5% to 5.3% at the 15-cm depth forA. palmeriandA. tuberculatus, respectively. Seed viability loss was greater in the seeds placed on the soil surface compared with the buried seeds. The greatest influences on seed viability were burial conditions and time and site-specific soil conditions, more so than geographical location. Thus, management of these weed species should focus on reducing seed shattering, enhancing seed removal from the soil surface, or adjusting tillage systems.


2021 ◽  
pp. 1-17
Author(s):  
Leo Roth ◽  
José Luiz C. S. Dias ◽  
Christopher Evans ◽  
Kevin Rohling ◽  
Mark Renz

Garlic mustard [Alliaria petiolata (M. Bieb.) Cavara & Grande] is a biennial invasive plant commonly found in the northeastern and midwestern United States. Although it is not recommended to apply herbicides after flowering, land managers frequently desire to conduct management during this timing. We applied glyphosate and triclopyr (3% v/v and 1% v/v using 31.8% and 39.8% acid equivalent formulations, respectively) postemergence to established, second-year A. petiolata populations at three locations when petals were dehiscing, and evaluated control, seed production and seed viability. Postemergence glyphosate applications at this timing provided 100% control of A. petiolata by 4 weeks after treatment at all locations whereas triclopyr efficacy was variable, providing 38-62% control. Seed production was only reduced at one location, with similar results regardless of treatment. Percent seed viability was also reduced, and when combined with reductions in seed production, we found a 71-99% reduction in number of viable seed produced plant-1 regardless of treatment. While applications did not eliminate viable seed production, our findings indicate that glyphosate and triclopyr applied while petals were dehiscing is a viable alternative to cutting or hand-pulling at this timing as it substantially decreased viable A. petiolata seed production. Management Implications Postemergence glyphosate and triclopyr applications in the early spring to rosettes are standard treatments used to manage A. petiolata. However, weather and other priorities limit the window for management, forcing field practitioners to utilize more labor-intensive methods such as hand-pulling. It is not known how late in the development of A. petiolata these herbicides can be applied to prevent viable seed production. Since prevention of soil seedbank replenishment is a key management factor for effective long-term control of biennial invasive species, we hypothesized late spring foliar herbicide applications to second year A. petiolata plants when flower petals were dehiscing could be an effective management tool if seed production or viability is eliminated. Our study indicated that glyphosate applications at this timing provided 100% control of A. petiolata plants by 4 weeks after treatment at all locations, whereas triclopyr efficacy was inconsistent. Although both glyphosate and triclopyr decreased viable seed production to nearly zero at one of our three study locations, the same treatments produced significant amounts of viable seed at the other two locations. Our findings suggest late spring glyphosate and triclopyr applications should not be recommended over early spring applications to rosettes for A. petiolata management, as our late spring application timing did not prevent viable seed production, and may require multiple years of implementation to eradicate populations. Nonetheless, this application timing holds value in areas devoid of desirable understory vegetation compared to no management practices or mechanical management options including hand-pulling when fruit are present, as overall viable seed production was reduced to similar levels as these treatments.


Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1355 ◽  
Author(s):  
RB Garnsey

Earthworms have the ability to alleviate many soil degradational problems in Australia. An attempt to optimize this resource requires fundamental understanding of earthworm ecology. This study reports the seasonal changes in earthworm populations in the Midlands of Tasmania (<600 mm rainfall p.a.), and examines, for the first time in Australia, the behaviour and survival rates of aestivating earthworms. Earthworms were sampled from 14 permanent pastures in the Midlands from May 1992 to February 1994. Earthworm activity was significantly correlated with soil moisture; maximum earthworm activity in the surface soil was evident during the wetter months of winter and early spring, followed by aestivation in the surface and subsoils during the drier summer months. The two most abundant earthworm species found in the Midlands were Aporrectodea caliginosa (maximum of 174.8 m-2 or 55.06 g m-2) and A. trapezoides (86 m-2 or 52.03 g m-2), with low numbers of Octolasion cyaneum, Lumbricus rubellus and A. rosea. The phenology of A. caliginosa relating to rainfall contrasted with that of A. trapezoides in this study. A caliginosa was particularly dependent upon rainfall in the Midlands: population density, cocoon production and adult development of A. caliginosa were reduced as rainfall reduced from 600 to 425 mm p.a. In contrast, the density and biomass of A. trapezoides were unaffected by rainfall over the same range: cocoon production and adult development continued regardless of rainfall. The depth of earthworm aestivation during the summers of 1992-94 was similar in each year. Most individuals were in aestivation at a depth of 150-200 mm, regardless of species, soil moisture or texture. Smaller aestivating individuals were located nearer the soil surface, as was shown by an increase in mean mass of aestivating individuals with depth. There was a high mortality associated with summer aestivation of up to 60% for juvenile, and 63% for adult earthworms in 1993 in the Midlands. Cocoons did not survive during the summers of 1992 or 1994, but were recovered in 1993, possibly due to the influence of rainfall during late winter and early spring.


1959 ◽  
Vol 37 (4) ◽  
pp. 419-428 ◽  
Author(s):  
William S. Hoar ◽  
G. Beth Robertson

Goldfish maintained under controlled photoperiods for 6 weeks or longer were relatively more resistant to a sudden elevation in temperature when the daily photoperiods had been long (16 hours) and relatively more resistant to sudden chilling when they had been short (8 hours). The magnitude of the effect varied with the season. Thyroid activity was slightly greater in fish maintained under the shorter photoperiods. The longer photoperiods stimulated more rapid growth of ovaries during late winter and early spring. The endocrine system is considered a link in the chain of events regulating seasonal variations in resistance to sudden temperature change.


Sign in / Sign up

Export Citation Format

Share Document