Laboratory Documentation of Multiple-Herbicide Tolerance to Fluridone, Norflurazon, and Topramazone in a Hybrid Watermilfoil (Myriophyllum spicatum×M. sibiricum) Population

Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 235-241 ◽  
Author(s):  
Sarah T. Berger ◽  
Michael D. Netherland ◽  
Gregory E. MacDonald

Invasive watermilfoils, specifically Eurasian watermilfoil and the interspecific hybrid of Eurasian watermilfoil × northern watermilfoil, continue to be problematic for water resource managers. Herbicides are often used to control these nuisance weeds and have been historically successful in controlling Eurasian watermilfoil. A population of hybrid watermilfoil from Townline Lake in Michigan has shown increased tolerance to the herbicide fluridone. The objective of this work is to determine if cross- and multiple tolerance have also developed in this population. Eurasian watermilfoil plants collected from multiple sites and plants from Townline Lake were treated with 0, 5, 10, 20, 40, or 80 µg L−1of fluridone, norflurazon, or topramezone. Fluridone and norflurazon inhibit phytoene desaturase, whereas topramezone is a 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide. Chlorophyll fluorescence (Fv/Fm) and pigment content was measured at 10 d after treatment. Townline Lake plants responded differently from susceptible plants when treated with fluridone, norflurazon, and topramezone at 40 µg L−1. These results indicate that the Townline population of hybrid watermilfoil has inherent tolerance to multiple herbicide modes of action. These results are especially significant as topramezone has recently been labeled for aquatic use. Screening of additional herbicides to determine potential herbicide tolerance of the Townline Lake population is recommended.

Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


2018 ◽  
Vol 33 (5) ◽  
pp. 1359-1373 ◽  
Author(s):  
Rachel Hogan Carr ◽  
Burrell Montz ◽  
Kathryn Semmens ◽  
Keri Maxfield ◽  
Samantha Connolly ◽  
...  

Abstract When extreme river levels are possible in a community, effective communication of weather and hydrologic forecasts is critical to protecting life and property. Residents, emergency personnel, and water resource managers need to make timely decisions about how and when to prepare. Uncertainty in forecasting is a critical component of this decision-making, but often poses a confounding factor for public and professional understanding of forecast products. A new suite of products from the National Weather Service’s Hydrologic Ensemble Forecast System (HEFS) provides short- and long-range forecasts, ranging from 6 h to 1 yr, and shows uncertainty in hydrologic forecasts. To understand how various audiences use and interpret ensemble forecasts showing a range of hydrologic forecast possibilities, a research project was conducted using scenario-based focus groups and surveys with community residents, emergency managers, and water resource managers in West Virginia and Maryland. The research assessed the utility of the HEFS products, identified barriers to proper understanding of the products, and suggested modifications to product design that could improve the understandability and accessibility for a range of users. There was a difference between the residential users’ reactions to the HEFS compared to the emergency managers and water resource managers, with the public reacting less favorably to all versions. The emergency managers preferred the revised HEFS products but had suggestions for additional changes, which were incorporated. Features such as interactive text boxes and forecaster’s notes further enhanced the utility and understandability of the products.


Science ◽  
2020 ◽  
Vol 368 (6488) ◽  
pp. 256-260 ◽  
Author(s):  
Toby R. Ault

Droughts of the future are likely to be more frequent, severe, and longer lasting than they have been in recent decades, but drought risks will be lower if greenhouse gas emissions are cut aggressively. This review presents a synopsis of the tools required for understanding the statistics, physics, and dynamics of drought and its causes in a historical context. Although these tools have been applied most extensively in the United States, Europe, and the Amazon region, they have not been as widely used in other drought-prone regions throughout the rest of the world, presenting opportunities for future research. Water resource managers, early career scientists, and veteran drought researchers will likely see opportunities to improve our understanding of drought.


2011 ◽  
Vol 4 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Chad Cason ◽  
Brad A. Roost

AbstractA total of 24 pre-and posttreatment plant frequency data sets were analyzed from 15 Wisconsin lakes treated with granular 2,4-D BEE herbicide for the control of Eurasian watermilfoil (Myriophyllum spicatum). Six data sets from four untreated control lakes were analyzed for comparison. The data sets included the results of line-transect aquatic plant surveys and point-intercept aquatic plant surveys. The results from these two survey methods were analyzed separately. Analysis of pre-and posttreatment changes in frequency of occurence for 46 species of aquatic plants indicated Eurasian watermilfoil was the only species to show significant declines in all the surveys. At application rates of 112 kg ha−1, Eurasian watermilfoil declined an average 65.9% among the line-transect surveys; and 58.0% among the point-intercept surveys. At application rates of 168 kg ha−1, Eurasian watermilfoil declined by 94.4% and 76.5% among line-transect and point-intercept surveys, respectively. Among the control lakes, Eurasian watermilfoil increased an average of 77% in year 1 and 24% in year 2. Northern watermilfoil (Myriophyllum sibiricum), a closely related native plant, underwent declines in frequency at the higher 2,4-D application rate (20.0%) but showed an increase (88.9%) at the lower rate among the line-transect surveys. Northern watermilfoil exhibited declines at both rates among the point-intercept surveys (48 and 50%, respectively); however, the plant also exhibited declines in the control lakes in year 2. Most other native aquatic plant species were unaffected or showed increases following treatment with 2,4-D BEE. The high degree of selectivity to Eurasian watermilfoil found in this survey of operational treatments with 2,4-D BEE suggests that this herbicide is an important tool for restoring plant communities that have been degraded by Eurasian watermilfoil.


2021 ◽  
Author(s):  
Christopher Mudge ◽  
Kurt Getsinger

Herbicide selection is key to efficiently managing nuisance vegetation in our nation’s waterways. After selecting the active ingredient, there still remains multiple proprietary and generic products to choose from. Recent small-scale research has been conducted to compare the efficacy of these herbicides against floating and emergent species. Therefore, a series of mesocosm and growth chamber trials were conducted to evaluate subsurface applications of the following herbicides against submersed plants: diquat versus coontail (Ceratophyllum demersum L.), hydrilla (Hydrilla verticillata L.f. Royle), southern naiad (Najas guadalupensis (Sprengel) Magnus), and Eurasian watermilfoil (Myriophyllum spicatum L.); flumioxazin versus coontail, hydrilla, and Eurasian watermilfoil; and triclopyr against Eurasian watermilfoil. All active ingredients were applied at concentrations commonly used to manage these species in public waters. Visually, all herbicides within a particular active ingredient performed similarly with regard to the onset and severity of injury symptoms throughout the trials. All trials, except diquat versus Eurasian watermilfoil, resulted in no differences in efficacy among the 14 proprietary and generic herbicides tested, and all herbicides provided 43%–100% control, regardless of active ingredient and trial. Under mesocosm and growth chamber conditions, the majority of the generic and proprietary herbicides evaluated against submersed plants provided similar control.


Author(s):  
Jane Hunter ◽  
Peter Becker ◽  
Abdulmonem Alabri ◽  
Catharine van Ingen ◽  
Eva Abal

The Health-e-Waterways Project is a multi-disciplinary collaboration between the University of Queensland, Microsoft Research and the South East Queensland Healthy Waterways Partnership (SEQ-HWP). This project develops the underlying technological framework and set of services to enable streamlined access to the expanding collection of real-time, near-real-time and static datasets related to water resource management in South East Queensland. More specifically, the system enables water resource managers to access the datasets being captured by the various agencies participating in the SEQ HWP Ecosystem Health Monitoring Program (EHMP). It also provides online access to the statistical data processing tools that enable users to analyse the data and generate online ecosystem report cards dynamically via a Web mapping interface. The authors examine the development of ontologies and semantic querying tools to integrate disparate datasets and relate management actions to water quality indicators for specific regions and periods. This semantic data integration approach enables scientists and resource managers to identify which actions are having an impact on which parameters and adapt the management strategies accordingly. This paper provides an overview of the semantic technologies developed to underpin the adaptive management framework that is the central philosophy behind the SEQ HWP.


Sign in / Sign up

Export Citation Format

Share Document