Weed Management withS-Metolachlor and Glyphosate Mixtures in Glyphosate-Resistant Strip- and Conventional-Tillage Cotton (Gossypium hirsutumL.)

2006 ◽  
Vol 20 (1) ◽  
pp. 232-241 ◽  
Author(s):  
Scott B. Clewis ◽  
John W. Wilcut ◽  
Dunk Porterfield

Five studies were conducted at Clayton, Rocky Mount, and Lewiston-Woodville, NC, in 2001 and 2002, to evaluate weed management, crop tolerance, and yield in strip- and conventional-tillage glyphosate-resistant cotton. Cotton was treated with two glyphosate formulations; glyphosate-IP (isopropylamine salt) or glyphosate-TM (trimethylsulfonium salt), early postemergence (EPOST) alone or in a mixture withS-metolachlor. Early season cotton injury was minimal (3%) with either glyphosate formulation alone or in mixture withS-metolachlor. Weed control and cotton yields were similar for both glyphosate formulations. The addition ofS-metolachlor to either glyphosate formulation increased control of broadleaf signalgrass, goosegrass, large crabgrass, and yellow foxtail 14 to 43 percentage points compared with control by glyphosate alone.S-metolachlor was not beneficial for late-season control of entireleaf morningglory, jimsonweed, pitted morningglory, or yellow nutsedge. The addition ofS-metolachlor to either glyphosate formulation increased control of common lambsquarters, common ragweed, Palmer amaranth, smooth pigweed, and velvetleaf 6 to 46 percentage points. The addition of a late postemergence-directed (LAYBY) treatment of prometryn plus MSMA increased control to greater than 95% for all weed species regardless of EPOST treatment, and control was similar with or withoutS-metolachlor EPOST. Cotton lint yield was increased 220 kg/ha with the addition ofS-metolachlor to either glyphosate formulation compared with yield from glyphosate alone. The addition of the LAYBY treatment increased yields 250 and 380 kg/ha for glyphosate plusS-metolachlor and glyphosate systems, respectively.S-metolachlor residual activity allowed for an extended window for more effective LAYBY application to smaller weed seedlings instead of weeds that were possibly larger and harder to control.

2006 ◽  
Vol 20 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Walter E. Thomas ◽  
Tim T. Britton ◽  
Scott B. Clewis ◽  
Shawn D. Askew ◽  
John W. Wilcut

Field studies were conducted at three locations to evaluate glyphosate-resistant (GR) cotton response, weed control, and cotton lint yields to two formulations of glyphosate (diammonium salt– glyphosate and isopropylamine salt–glyphosate) and trifloxysulfuron applied early postemergence (EPOST) alone or to tank mixtures of trifloxysulfuron with each glyphosate formulation, with and without a late postemergence-directed (LAYBY) treatment of prometryn plus MSMA. Trifloxysulfuron and both formulations of glyphosate controlled common lambsquarters and pitted morningglory. Both glyphosate formulations provided equivalent control of common lambsquarters, goosegrass, pitted morningglory, prickly sida, and smooth pigweed. Trifloxysulfuron controlled smooth pigweed better than either glyphosate formulation but did not control goosegrass or prickly sida. Prometryn plus MSMA LAYBY improved late-season control of common lambsquarters, goosegrass, large crabgrass, and pitted morningglory for all EPOST systems and improved late-season smooth pigweed control for EPOST systems that did not include trifloxysulfuron. Cotton injury was 2% or less from both glyphosate formulations, while trifloxysulfuron injured ‘Deltapine 5415RR’ 7 to 16% at two locations. At a third location, trifloxysulfuron injured ‘Paymaster 1218RR/BG’ 24%, and when applied in mixture with either glyphosate formulation, injury increased to at least 72%. Cotton injury was transient at the first two locations and was not visually apparent 3 to 5 wk later. Cotton yield at the third location was reduced. High cotton yields reflected high levels of weed control.


2004 ◽  
Vol 18 (3) ◽  
pp. 826-834 ◽  
Author(s):  
Walter E. Thomas ◽  
Ian C. Burke ◽  
John W. Wilcut

Four field studies were conducted at the Peanut Belt Research Station near Lewiston Woodville, NC, in 2000, 2001, and 2002 to evaluate crop tolerance, weed control, grain yield, and net returns in glyphosate-resistant corn with various herbicide systems. Preemergence (PRE) treatment options included no herbicide, atrazine at 1.12 kg ai/ha, or atrazine plus metolachlor at 1.68 kg ai/ha. Postemergence (POST) treatment options included glyphosate at 1.12 kg ai/ha as either the isopropylamine salt or the diammonium salt, either alone or in mixtures with mesotrione at 105 g ai/ha plus crop oil concentrate at 1% (v/v) or halosulfuron at 53 g ai/ha plus 0.25% (v/v) nonionic surfactant. All response variables were independent of glyphosate formulation. Addition of metolachlor to atrazine PRE improved large crabgrass and goosegrass control but did not always improve Texas panicum control. POST control of these annual grasses was similar with glyphosate alone or in mixture with halosulfuron or mesotrione. Glyphosate POST controlled common lambsquarters and common ragweed 89 and 93%, respectively. Glyphosate plus halosulfuron POST provided more effective yellow nutsedge control than glyphosate POST. Atrazine PRE or atrazine plus metolachlor PRE followed by any glyphosate POST treatment controlledIpomoeaspp. at least 93%. Glyphosate plus mesotrione in total POST systems always provided greater control ofIpomoeaspp. than glyphosate alone. The highest yielding treatments always included glyphosate POST, either with or without a PRE herbicide treatment. Similarly, systems that included any glyphosate POST treatment had the highest net returns.


2004 ◽  
Vol 18 (4) ◽  
pp. 1049-1057 ◽  
Author(s):  
Walter E. Thomas ◽  
Ian C. Burke ◽  
John W. Wilcut

Three field studies were conducted at Lewiston Woodville, NC, in 2001 and 2002 to evaluate crop tolerance, weed control, grain yield, and net returns in glyphosate-resistant corn with various herbicide systems. Crop injury, weed control, and grain yield were not influenced by glyphosate formulation. Atrazine preemergence (PRE) and atrazine plus metolachlor PRE, averaged over postemergence (POST) systems, controlled Texas panicum at least 80 and 87%, respectively. Sequential glyphosate applications (early postemergence [EPOST] followed by [fb] POST) provided at least 99% control of Texas panicum compared with at least 86 and 88% control with glyphosate EPOST and glyphosate plus halosulfuron EPOST, respectively. Atrazine plus metolachlor PRE fb any glyphosate system controlled large crabgrass and goosegrass 89 to 100% and 94 to 100%, respectively. Sequential glyphosate treatments controlled large crabgrass and goosegrass at least 99 and 95%, respectively. Regardless of PRE system, glyphosate plus halosulfuron EPOST and sequential applications of glyphosate controlled common ragweed and common lambsquarters at least 99%, whereas glyphosate EPOST alone provided at least 88 and 96% control, respectively. Glyphosate plus halosulfuron EPOST and glyphosate sequentially controlled yellow nutsedge similarly and more consistently than glyphosate EPOST. Regardless of PRE treatment, sequential glyphosate applications provided at least 98% control of entireleaf and pitted morningglory, whereas glyphosate EPOST controlled at least 64 and 62%, respectively. Glyphosate EPOST and the sequential glyphosate EPOST fb POST systems yielded similarly at all three locations. Net returns were highest at all three locations with the glyphosate sequential system, with similar net returns obtained with glyphosate EPOST and glyphosate plus halosulfuron EPOST at two and one locations, respectively.


2011 ◽  
Vol 25 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Jared R. Whitaker ◽  
Alan C. York ◽  
David L. Jordan ◽  
A. Stanley Culpepper

Glyphosate-resistant (GR) Palmer amaranth has become a serious pest in parts of the Cotton Belt. Some GR cotton cultivars also contain the WideStrike™ insect resistance trait, which confers tolerance to glufosinate. Use of glufosinate-based management systems in such cultivars could be an option for managing GR Palmer amaranth. The objective of this study was to evaluate crop tolerance and weed control with glyphosate-based and glufosinate-based systems in PHY 485 WRF cotton. The North Carolina field experiment compared glyphosate and glufosinate alone and in mixtures applied twice before four- to six-leaf cotton. Additional treatments included glyphosate and glufosinate mixed withS-metolachlor or pyrithiobac applied to one- to two-leaf cotton followed by glyphosate or glufosinate alone on four- to six-leaf cotton. All treatments received a residual lay-by application. Excellent weed control was observed from all treatments on most weed species. Glyphosate was more effective than glufosinate on glyphosate-susceptible (GS) Palmer amaranth and annual grasses, while glufosinate was more effective on GR Palmer amaranth. Annual grass and GS Palmer amaranth control by glyphosate plus glufosinate was often less than control by glyphosate alone but similar to or greater than control by glufosinate alone, while mixtures were more effective than either herbicide alone on GR Palmer amaranth. Glufosinate caused minor and transient injury to the crop, but no differences in cotton yield or fiber quality were noted. This research demonstrates glufosinate can be applied early in the season to PHY 485 WRF cotton without concern for significant adverse effects on the crop. Although glufosinate is often less effective than glyphosate on GS Palmer amaranth, GR Palmer amaranth can be controlled with well-timed applications of glufosinate. Use of glufosinate in cultivars with the WideStrike trait could fill a significant void in current weed management programs for GR Palmer amaranth in cotton.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


1996 ◽  
Vol 10 (2) ◽  
pp. 327-336 ◽  
Author(s):  
J. Rolf Olsen ◽  
Jayson K. Harper ◽  
William S. Curran

A computer model which selects least cost herbicide programs given a minimum desired level of weed control could provide growers with economical weed management options. Using an integer programming approach, a herbicide selection model was developed for corn production under Pennsylvania conditions. Models for three rotations (corn-soybean, corn-corn, and corn-alfalfa) under three tillage systems (conventional tillage, reduced tillage, and no-till) that evaluated 21 soil-applied and 13 postemergence herbicide options for 24 weeds were developed. Each model minimizes the cost of a herbicide program subject to a desired level of weed control. By selecting the weed species to be controlled and the level of control desired, customized herbicide programs can be generated. The models can also be used to evaluate the cost of changing the level of control desired for an individual weed species or set of weeds.


2013 ◽  
Vol 27 (3) ◽  
pp. 612-622 ◽  
Author(s):  
Dilpreet S. Riar ◽  
Jason K. Norsworthy ◽  
Lawrence E. Steckel ◽  
Daniel O. Stephenson ◽  
Thomas W. Eubank ◽  
...  

Soybean consultants from Arkansas, Louisiana, Mississippi, and Tennessee were surveyed by direct mail and by on-farm visits in fall 2011 to assess weed management practices and the prevalence of weed species in midsouth U.S. soybean. These consultants represented 15, 21, 5, and 10% of total soybean planted in Arkansas, Louisiana, Mississippi, and Tennessee, respectively, in 2011. Collectively, 93% of the total scouted area in these four states was planted with glyphosate-resistant (RR) soybean. The adoption of glufosinate-resistant (LL) soybean was greatest in Arkansas (12%), followed by Tennessee (4%), Mississippi (2%), and Louisiana (< 1%). Only 17% of the RR soybean was treated solely with glyphosate, compared with 35% of LL soybean treated solely with glufosinate. Across four states, average cost of herbicides in RR and LL soybean systems was US$78 and US$91 ha−1, respectively. Collectively across states, total scouted area under conventional tillage was 42%, stale seedbed was 37%, and no-tillage was 21%. Palmer amaranth and morningglories were the most problematic weeds in all four states. Additionally, barnyardgrass and horseweed were the third most problematic weeds of Arkansas and Tennessee, respectively, and Italian ryegrass was the third most problematic weed in Louisiana and Mississippi. Glyphosate-resistant Palmer amaranth infested fewer fields in Louisiana (16% of fields) than it did in the remaining three states (54% collectively). Average Palmer amaranth hand-weeding costs in the midsouth was US$59 ha−1. Three-fourths of the midsouth consultants stipulated the need for continued research and education focused on management of glyphosate-resistant and glyphosate-tolerant weed species.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 962
Author(s):  
Simon Fonteyne ◽  
Ravi Gopal Singh ◽  
Bram Govaerts ◽  
Nele Verhulst

Weed management is one of the main challenges of conservation agriculture. Although all three components of conservation agriculture (minimal tillage, permanent soil cover and crop diversification) can reduce weed populations, these effects may only become apparent in the medium to long term. This study evaluated weed biomass, density and diversity with and without herbicide control in a long-term trial initiated in 1991 in the Mexican Highlands to evaluate all three components of conservation agriculture. Data were collected in 2004, 2005, 2013, 2014 and 2015. Weed density and biomass were generally lower in conservation agriculture than with conventional tillage. The three components of conservation agriculture significantly reduced weed biomass, which was lower when all three components were applied together. When herbicides were applied, weed biomass in conservation agriculture was 91% lower in maize and 81% lower in wheat than in conventional tillage. Different treatments favored different weed species, but no trend toward increased perennial weeds was observed in conservation agriculture. These data supported claims stating that if adequate weed control is achieved in the initial years, weed populations in conservation agriculture systems are lower than in conventional tillage systems.


2006 ◽  
Vol 20 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Thomas C. Mueller ◽  
Christopher L. Main ◽  
M. Angela Thompson ◽  
Lawrence E. Steckel

Greenhouse and field experiments were conducted near Knoxville, TN, during 2002 and 2003 to investigate the effects of calcium and magnesium ions on the performance of three glyphosate formulations with and without diammonium sulfate (AMS). Weed species investigated in the greenhouse were broadleaf signalgrass, pitted morningglory, Palmer amaranth, and yellow nutsedge. Three glyphosate formulations (isopropylamine salt, diammonium salt, and potassium salt) and two glyphosate application rates (0.42 and 0.84 kg ae/ha) were applied to weeds in water fortified with either calcium or magnesium at concentrations of 0, 250, 500, 750, and 1,000 ppm. In all comparisons, there were no differences in the three glyphosate formulations. Glyphosate activity was reduced only when cation concentration was >250 ppm, and this antagonism was not observed when 2% w/ w AMS was added to the spray solution. A chemical analysis of the calcium and magnesium concentrations in water collected from farmers indicated that water samples from eight different producers contained relatively low amounts of cations, with calcium at <40 ppm and magnesium at <8 ppm. In the field results using these and other waters as the herbicide carrier, broadleaf signalgrass control was greater with the 0.84 kg ae/ha than 0.42 kg ae/ha glyphosate rate regardless of water source or addition of AMS. Pitted morningglory responded similarly to glyphosate with water from all farms and with AMS added, and the addition of AMS gave similar results for both glyphosate rates. In 2003, common cocklebur was evaluated and control was >93% regardless of glyphosate rate, water source, or AMS addition. Based on these results, the addition of AMS-based adjuvants to many glyphosate applications may not be warranted.


2009 ◽  
Vol 23 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Wesley J. Everman ◽  
Scott B. Clewis ◽  
Alan C. York ◽  
John W. Wilcut

Field studies were conducted near Clayton, Lewiston, and Rocky Mount, NC in 2005 to evaluate weed control and cotton response to preemergence treatments of pendimethalin alone or in a tank mixture with fomesafen, postemergence treatments of glufosinate applied alone or in a tank mixture withS-metolachlor, and POST-directed treatments of glufosinate in a tank mixture with flumioxazin or prometryn. Excellent weed control (> 91%) was observed where at least two applications were made in addition to glufosinate early postemergence (EPOST). A reduction in control of common lambsquarters (8%), goosegrass (20%), large crabgrass (18%), Palmer amaranth (13%), and pitted morningglory (9%) was observed when residual herbicides were not included in PRE or mid-POST programs. No differences in weed control or cotton lint yield were observed between POST-directed applications of glufosinate with flumioxazin compared to prometryn. Weed control programs containing three or more herbicide applications resulted in similar cotton lint yields at Clayton and Lewiston, and Rocky Mount showed the greatest variability with up to 590 kg/ha greater lint yield where fomesafen was included PRE compared to pendimethalin applied alone. Similarly, an increase in cotton lint yields of up to 200 kg/ha was observed whereS-metolachlor was included mid-POST when compared to glufosinate applied alone, showing the importance of residual herbicides to help maintain optimal yields. Including additional modes of action with residual activity preemergence and postemergence provides a longer period of weed control, which helps maintain cotton lint yields.


Sign in / Sign up

Export Citation Format

Share Document