Response of Four Market Classes of Dry Bean (Phaseolus vulgaris) to Foramsulfuron, Isoxaflutole, and Isoxaflutole plus Atrazine Applied in Previous Years

2006 ◽  
Vol 20 (3) ◽  
pp. 558-563 ◽  
Author(s):  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

Three field trials were established from 2001 to 2003 in Ontario to determine the effect of foramsulfuron POST (35 and 70 g ai/ha), isoxaflutole PRE (105 and 210 g ai/ha), and isoxaflutole plus atrazine PRE (105 + 1063 and 210 + 2126 g ai/ha) applied in the previous years to field corn on cranberry, black, kidney, and white (navy) bean. Foramsulfuron residues did not cause visible injury, or reductions in shoot dry weight or yield of dry bean 1 yr after application in corn. In contrast, visual injury across the four market classes varied from 4 to 37% 1 yr after application of isoxaflutole, and from 30 to 54% 1 yr after application of isoxaflutole plus atrazine. Isoxaflutole residues reduced shoot dry weight and yield as much as 81 and 44% in cranberry, 52 and 39% in black, 53 and 19% in kidney, and 42 and 19% in white bean, respectively. Isoxaflutole plus atrazine residues reduced shoot dry weight and yield as much as 87 and 64% in cranberry, 75 and 61% in black, 71 and 46% in kidney, and 65 and 33% in white navy bean, respectively. Injury was not detected regardless of market classes 2 yr after application of isoxaflutole alone or in tank mix with atrazine. Based on these results, it is recommended that none of the market classes of dry bean tested in this study should be grown 1 year after an application of isoxaflutole or isoxaflutole plus atrazine. A recropping interval of 2 years is currently recommended following applications of isoxaflutole or isoxaflutole plus atrazine for these market classes of dry bean.

2007 ◽  
Vol 21 (1) ◽  
pp. 230-234 ◽  
Author(s):  
Peter H. Sikkema ◽  
Christy Shropshire ◽  
Nader Soltani

Three field trials were conducted over a 2-yr period (2004 and 2005) at Exeter and Ridgetown, Ontario to evaluate the tolerance of eight market classes of dry beans to KIH-485 applied PRE at 210 and 420 g ai/ha. KIH-485 PRE caused as much as 67% visual injury in small-seeded and 44% visual injury in large-seeded dry beans. KIH-485 applied PRE at 420 g/ha reduced plant height up to 47% at Ridgetown and 8% at Exeter in 2004, and reduced height of brown and white bean by 15 and 19%, respectively, but had no effect on the height of the other beans in 2005. Shoot dry weight was not affected at Exeter in 2004 but was reduced by 46% at Ridgetown in 2004 and 14% at Exeter in 2005. In 2004, seed moisture content increased by 5, 6, and 12% in black, otebo, and pinto beans, respectively. Seed yield was reduced up to 27% at Ridgetown and 11% at Exeter in 2004 but was not affected at Exeter in 2005. On the basis of this research, KIH-485 PRE causes unacceptable injury in some dry bean market classes.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Field studies were conducted in 2010 and 2011 at the Huron Research Station, Exeter, Ontario and from 2009 to 2011 at the University of Guelph Ridgetown Campus, Ridgetown, Ontario to evaluate the sensitivity of four market classes of dry bean to sulfentrazone applied preemergence at 105, 140, and 280 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha. At 1 week after emergence (WAE), sulfentrazone alone or in combination with imazethapyr at all doses evaluated caused no significant visible injury in dry bean. At 2 WAE, sulfentrazone alone caused 1–11, 1–11, 1–5, and 3–19% visible injury, and sulfentrazone + imazethapyr caused 3–11, 2–10, 2–5, and 4–20% visible injury in black, cranberry, kidney, and white bean, respectively. At 4 WAE, sulfentrazone alone caused 1–7, 1–7, 0–4, and 1–16% visible injury and sulfentrazone + imazethapyr caused 1–8, 1–5, 1–3, and 2–14% visible injury in black, cranberry, kidney, and white bean, respectively. Sulfentrazone PRE caused slightly greater injury in black and white bean compared to cranberry and kidney bean. Generally, crop injury with sulfentrazone at rates up to 140 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha was minimal with no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Based on these results, there is potential for preemergence application of sulfentrazone at rates up to 140 g ai/ha alone or in combination with imazethapyr at 37.5 g ai/ha in black, cranberry, kidney and white bean.


2009 ◽  
Vol 89 (5) ◽  
pp. 993-997 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
P H Sikkema

Three field trials were conducted over a 2-yr period at Exeter (2007, 2008) and Ridgetown (2007), Ontario to evaluate the tolerance of two market classes and two cultivars of each market class (cranberry, Etna and Hooter; kidney, Red Kanner and Red Hawk) of dry bean to preplant incorporated (PPI) and preemergence (PRE) applications of pyroxasulfone at 209 and 418 g a.i. ha-1. All treatments including the non-treated control were maintained weed free during the growing season. There was greater injury when pyroxasulfone was applied PPI than PRE, and injury was greater with the high rate at 1, 2, and 4 wk after emergence (WAE). Pyroxasulfone at 209 and 418 g a.i. ha-1 caused as much as 32 and 61% visible injury when applied PPI and 15 and 30% visible injury when applied PRE in dry bean, respectively. Pyroxasulfone at 209 and 418 g a.i. ha-1 decreased shoot dry weight as much as 60 and 80% when applied PPI and 30 and 50% when applied PRE in dry bean, respectively. Plant height was not affected by pyroxasulfone application timing, but was rate dependent. Height was reduced 14, 13, 22 and 13% at 209 g a.i. ha-1 and 24, 31, 42 and 27% at 418 g a.i. ha-1 for Etna, Hooter, Red Kanner and Red Hawk cultivars, respectively. Dry bean yield was reduced as much as 29% at 209 g a.i. ha-1 and 45% at 418 g a.i. ha-1. This research shows that there is not an adequate margin of crop safety for pyroxasulfone applied PPI or PRE at the rates evaluated in Etna, Hooter, Red Kanner and Red Hawk dry beans in Ontario.Key words: Cranberry bean, Etna bean, kidney bean, Hooter bean, Phaseolus vulgaris L., Red Hawk bean, Red Kanner bean, pyroxasulfone


2012 ◽  
Vol 92 (4) ◽  
pp. 723-728 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Soltani, N., Shropshire, C. and Sikkema, P. H. 2012. Response of dry beans to halosulfuron applied postemergence. Can. J. Plant Sci. 92: 723–728. Four field trials were conducted over a 2-yr period (2009 and 2010) at Exeter and Ridgetown, Ontario, to evaluate the tolerance of adzuki, black, cranberry, kidney, otebo, pinto, Small Red Mexican and white beans to halosulfuron applied postemergence (POST) at 35 and 70 g a.i. ha−1. All treatments including the non-treated control were maintained weed free during the growing season. Halosulfuron applied POST caused as much as 73, 7, 13, 12, 12, 11, 11 and 9% injury in adzuki, black, cranberry, kidney, otebo, pinto, Small Red Mexican (SRM) and white beans, respectively. Halosulfuron applied POST reduced adzuki bean height as much as 52 and 70% at Exeter and Ridgetown, respectively. Plant height was not affected in the other market classes of dry bean evaluated. Halosulfuron POST reduced shoot dry weight of adzuki bean 68% at both rates evaluated. Otebo and SRM bean shoot dry weight were not affected when halosulfuron was applied POST at 35 g a.i. ha−1 but otebo bean shoot dry weight was reduced 12% and SRM bean shoot dry weight was reduced 14% at 70 g a.i. ha−1. Shoot dry weight of black, cranberry, kidney, pinto and white bean was not affected with either rate of halosulfuron. Seed yield of adzuki bean was decreased 58% at 35 g a.i. ha−1 and 68% at 70 g a.i. ha−1 with halosulfuron. White bean yield was not affected with halosulfuron applied POST at 35 g a.i. ha−1 but was reduced 9% at 70 g a.i. ha−1. Seed yield of black, cranberry, kidney, otebo, pinto and SRM bean was not reduced with either rate of halosulfuron. Based on these results, there is not an adequate margin of crop safety for halosulfuron POST in adzuki bean. However, there is potential for POST application of halosulfuron in black, cranberry, kidney, otebo, pinto, SRM and white beans.


2016 ◽  
Vol 30 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Zhenyi Li ◽  
Rene C. Van Acker ◽  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

White bean tolerance and weed control were examined by applying halosulfuron alone or in combination with pendimethalin, dimethenamid-P, orS-metolachlor applied PRE. All herbicides applied alone or in combination caused less than 3% visible injury 1 and 4 wk after emergence (WAE). Halosulfuron applied PRE provided greater than 95% control of common lambsquarters, wild mustard, redroot pigweed, and common ragweed and less than 55% control of green foxtail at 4 and 8 WAE. Weed density and dry weight at 8 WAE paralleled the control ratings. Dry bean yields in halosulfuron plus a soil applied grass herbicide did not differ compared to the weed-free control. Green foxtail competition with halosulfuron PRE applied alone resulted in reduced white bean yield compared to the weed-free control.


2007 ◽  
Vol 87 (2) ◽  
pp. 309-311
Author(s):  
S. J. Park ◽  
T. Rupert ◽  
K. Yu

Galley, white bean (navy bean) (Phaseolus vulgaris L), has good yield potential with dull white seed coat luster and semi-determinate growth habit with upright plant type. It is resistant to lodging, early medium season maturity in southwestern Ontario. Key words: Phaseolus vulgaris, dry bean, cultivar description, plant type, white mould


1986 ◽  
Vol 66 (4) ◽  
pp. 825-836 ◽  
Author(s):  
JACQUELINE C. MOXLEY ◽  
D. J. HUME ◽  
D. L. SMITH

Dry bean (Phaseolus vulgaris L.) is a legume crop generally considered to be a poor N2 fixer. This experiment was conducted to determine the effectiveness of Rhizobium phaseoli strains in Ontario soils, to determine if inoculation with an indigenous, effective strain could improve N2 fixation or yield, and to determine the competitiveness of inoculant strains by measuring the recovery of applied strains in nodules using serology. One-gram composite soil samples from 36 of 37 farm sites across Ontario caused nodulation on either white bean cultivars Ex Rico 23 or Seafarer, indicating that R. phaseoli was widely distributed. However, ratings of nodulation indicated a wide range of effectiveness. Five selected strains isolated from these soils were compared with five strains from culture collections for effectiveness by using the strains to inoculate Ex Rico 23 or Seafarer grown in sterile, N-free culture in Leonard jars. The best field-isolated strains caused just as much N accumulation as the best strains from culture collections. Strain S1, selected as a consistently good N2 fixer, failed to cause increases in yield when used as an inoculant in field trials at Elora and Mitchell in 1980 and 1981. Inoculation with strain S1 did cause some increases in percent seed protein and nodule dry weight with Ex Rico 23 at Elora in 1980. Three other strains tested in each year failed to show any improvements in yield, seed N, or nodulation in either year. Recovery of inoculant strains ranged from 0 to 31%. At Mitchell in 1981, 100 kg ha−1 of fertilizer N increased yields over all inoculation treatments. Indigenous strains appeared to be only partially effective N2 fixers and inoculant strains generally were poor competitors against strains already present in the soils.Key words: White bean, Phaseolus vulgaris, Rhizobium phaseoli, N2 fixation, strain competition


2010 ◽  
Vol 24 (2) ◽  
pp. 143-146 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

There is little information on the tolerance of leguminous crops to saflufenacil. A field study was conducted three times over a 2-yr period (2006, 2007) in Ontario, Canada, to determine the tolerance of adzuki bean, cranberry bean, lima bean, processing pea, snap bean, soybean, and white (navy) bean to saflufenacil applied PRE at 100 and 200 g ai/ha. Saflufenacil caused 51 to 99% injury, reduced height 25 to 93%, reduced shoot dry weight 92 to 99%, and reduced seed yield 56 to 99% in adzuki bean, cranberry bean, lima bean, snap bean, and white bean. Injury was lower in soybean and processing pea. Saflufenacil caused 1 to 25% injury, reduced height 3 to 13%, reduced shoot dry weight 5 to 30%, and reduced seed yield 0 to 4% in soybean and processing pea. Cranberry bean, snap bean, white bean, and lima bean were the most sensitive crops to saflufenacil followed by adzuki bean. Soybean and processing pea were the most tolerant to saflufenacil. Based on these results, saflufenacil applied PRE can be safely used in specific cultivars of pea and soybean at the proposed rate of 100 g/ha. However, there is not an acceptable margin of crop safety for saflufenacil PRE at 100 or 200 g/ha in adzuki, cranberry, lima, snap, and white bean.


Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Karen A. Renner ◽  
Gary E. Powell

The response of ‘C-20’ navy bean and ‘Frankenmuth’ soft white winter wheat grown in rotation to clomazone, imazethapyr, bentazon, and acifluorfen was examined. Clomazone at 560 and 430 g ai ha−1plus 800 g ai ha−1pendimethalin and 2000 g ai ha−1chloramben visibly injured navy bean in 1 of 2 yr. However, navy bean seed moisture at harvest and yield was not reduced compared to the weed-free control. PPI and PRE treatments of 70 g ai ha−1imazethapyr did not injure navy bean or reduce yield. Imazethapyr applied POST at 70 g ha−1plus nonionic surfactant visibly injured navy bean. The addition of urea ammonium nitrate to imazethapyr enhanced visible injury and seed moisture compared to nonionic surfactant alone in 1 of 2 yr. However, seed yield was not reduced. Seed moisture at harvest was greater following treatment with 430 g ai ha−1acifluorfen plus nonionic surfactant or urea ammonium nitrate and 140 and 280 g ha−1acifluorfen plus 840 g ai ha−1bentazon in 1 of 2 yr compared to the weed-free control, but yield was not reduced. Wheat yield was reduced in 2 of 2 and 1 of 2 yr by 560 g ha−1and 430 g ha−1clomazone, respectively, plus pendimethalin plus chloramben compared to the weed-free control. Wheat yield was not reduced by imazethapyr, bentazon, or acifluorfen.


2010 ◽  
Vol 90 (6) ◽  
pp. 933-938 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
P.H. Sikkema

Nine field trials (five with PRE and four with POST herbicides) were conducted in 2006 to 2009 on various Ontario farms with heavy common cocklebur infestations to determine the effectiveness of PRE and POST herbicides for the control of common cocklebur in corn. There was no commercially significant corn injury from the PRE herbicides evaluated. Saflufenacil, saflufenacil/dimethenamid-p, isoxaflutole + atrazine, mesotrione + atrazine and dicamba/atrazine, applied PRE provided 85, 85, 76, 73 and 67% control of common cocklebur in corn 8 wk after emergence (WAE), respectively. Common cocklebur shoot dry weight was reduced 84, 80, 79, 75 and 68% with saflufenacil/dimethenamid-p, isoxaflutole + atrazine, mesotrione + atrazine, saflufenacil and dicamba/atrazine, respectively. There was no effect on corn yield compared with the weedy control with the PRE herbicides evaluated. The application of 2,4-D/atrazine POST resulted in unacceptable injury (28%) in corn. Dicamba/atrazine, dicamba/diflufenzopyr, dicamba and mesotrione + atrazine provided up to 98, 95, 90 and 90% control of common cocklebur 8 wk after application (WAA), respectively. All POST herbicide treatments increased corn yield compared with the non-treated control. Saflufenacil and saflufenacil/dimethenamid-p applied PRE and dicamba, dicamba/diflufenzopyr, dicamba/atrazine or mesotrione + atrazine applied POST have potential to provide good to excellent control of common cocklebur in corn under Ontario environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document