Response of dry bean to preplant incorporated and preemergence applications of pyroxasulfone

2009 ◽  
Vol 89 (5) ◽  
pp. 993-997 ◽  
Author(s):  
N. Soltani ◽  
C. Shropshire ◽  
P H Sikkema

Three field trials were conducted over a 2-yr period at Exeter (2007, 2008) and Ridgetown (2007), Ontario to evaluate the tolerance of two market classes and two cultivars of each market class (cranberry, Etna and Hooter; kidney, Red Kanner and Red Hawk) of dry bean to preplant incorporated (PPI) and preemergence (PRE) applications of pyroxasulfone at 209 and 418 g a.i. ha-1. All treatments including the non-treated control were maintained weed free during the growing season. There was greater injury when pyroxasulfone was applied PPI than PRE, and injury was greater with the high rate at 1, 2, and 4 wk after emergence (WAE). Pyroxasulfone at 209 and 418 g a.i. ha-1 caused as much as 32 and 61% visible injury when applied PPI and 15 and 30% visible injury when applied PRE in dry bean, respectively. Pyroxasulfone at 209 and 418 g a.i. ha-1 decreased shoot dry weight as much as 60 and 80% when applied PPI and 30 and 50% when applied PRE in dry bean, respectively. Plant height was not affected by pyroxasulfone application timing, but was rate dependent. Height was reduced 14, 13, 22 and 13% at 209 g a.i. ha-1 and 24, 31, 42 and 27% at 418 g a.i. ha-1 for Etna, Hooter, Red Kanner and Red Hawk cultivars, respectively. Dry bean yield was reduced as much as 29% at 209 g a.i. ha-1 and 45% at 418 g a.i. ha-1. This research shows that there is not an adequate margin of crop safety for pyroxasulfone applied PPI or PRE at the rates evaluated in Etna, Hooter, Red Kanner and Red Hawk dry beans in Ontario.Key words: Cranberry bean, Etna bean, kidney bean, Hooter bean, Phaseolus vulgaris L., Red Hawk bean, Red Kanner bean, pyroxasulfone

2012 ◽  
Vol 92 (4) ◽  
pp. 723-728 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Soltani, N., Shropshire, C. and Sikkema, P. H. 2012. Response of dry beans to halosulfuron applied postemergence. Can. J. Plant Sci. 92: 723–728. Four field trials were conducted over a 2-yr period (2009 and 2010) at Exeter and Ridgetown, Ontario, to evaluate the tolerance of adzuki, black, cranberry, kidney, otebo, pinto, Small Red Mexican and white beans to halosulfuron applied postemergence (POST) at 35 and 70 g a.i. ha−1. All treatments including the non-treated control were maintained weed free during the growing season. Halosulfuron applied POST caused as much as 73, 7, 13, 12, 12, 11, 11 and 9% injury in adzuki, black, cranberry, kidney, otebo, pinto, Small Red Mexican (SRM) and white beans, respectively. Halosulfuron applied POST reduced adzuki bean height as much as 52 and 70% at Exeter and Ridgetown, respectively. Plant height was not affected in the other market classes of dry bean evaluated. Halosulfuron POST reduced shoot dry weight of adzuki bean 68% at both rates evaluated. Otebo and SRM bean shoot dry weight were not affected when halosulfuron was applied POST at 35 g a.i. ha−1 but otebo bean shoot dry weight was reduced 12% and SRM bean shoot dry weight was reduced 14% at 70 g a.i. ha−1. Shoot dry weight of black, cranberry, kidney, pinto and white bean was not affected with either rate of halosulfuron. Seed yield of adzuki bean was decreased 58% at 35 g a.i. ha−1 and 68% at 70 g a.i. ha−1 with halosulfuron. White bean yield was not affected with halosulfuron applied POST at 35 g a.i. ha−1 but was reduced 9% at 70 g a.i. ha−1. Seed yield of black, cranberry, kidney, otebo, pinto and SRM bean was not reduced with either rate of halosulfuron. Based on these results, there is not an adequate margin of crop safety for halosulfuron POST in adzuki bean. However, there is potential for POST application of halosulfuron in black, cranberry, kidney, otebo, pinto, SRM and white beans.


2006 ◽  
Vol 20 (3) ◽  
pp. 558-563 ◽  
Author(s):  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

Three field trials were established from 2001 to 2003 in Ontario to determine the effect of foramsulfuron POST (35 and 70 g ai/ha), isoxaflutole PRE (105 and 210 g ai/ha), and isoxaflutole plus atrazine PRE (105 + 1063 and 210 + 2126 g ai/ha) applied in the previous years to field corn on cranberry, black, kidney, and white (navy) bean. Foramsulfuron residues did not cause visible injury, or reductions in shoot dry weight or yield of dry bean 1 yr after application in corn. In contrast, visual injury across the four market classes varied from 4 to 37% 1 yr after application of isoxaflutole, and from 30 to 54% 1 yr after application of isoxaflutole plus atrazine. Isoxaflutole residues reduced shoot dry weight and yield as much as 81 and 44% in cranberry, 52 and 39% in black, 53 and 19% in kidney, and 42 and 19% in white bean, respectively. Isoxaflutole plus atrazine residues reduced shoot dry weight and yield as much as 87 and 64% in cranberry, 75 and 61% in black, 71 and 46% in kidney, and 65 and 33% in white navy bean, respectively. Injury was not detected regardless of market classes 2 yr after application of isoxaflutole alone or in tank mix with atrazine. Based on these results, it is recommended that none of the market classes of dry bean tested in this study should be grown 1 year after an application of isoxaflutole or isoxaflutole plus atrazine. A recropping interval of 2 years is currently recommended following applications of isoxaflutole or isoxaflutole plus atrazine for these market classes of dry bean.


2006 ◽  
Vol 20 (1) ◽  
pp. 118-122 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Tolerance of eight market classes of dry beans (black, brown, cranberry, kidney, otebo, pinto, white, and yellow eye beans) to the PRE application of linuron at the rate of 2.25 and 4.50 kg ai/ha was studied at two locations in Ontario, Canada, in 2003 and 2004. The eight market classes differed in their response to linuron. Linuron PRE caused as much as 43, 20, 7, 17, 54, 36, 56, and 12% visual injury in black, brown, cranberry, kidney, otebo, pinto, white, and yellow eye beans, respectively. Linuron PRE at 2.25 kg/ha reduced plant height 38% in otebo beans and 31% in white beans. Linuron PRE at 4.50 kg/ha reduced plant height 24 to 56% in black, brown, otebo, pinto, and white beans. Shoot dry weight was reduced in otebo beans by 56% and in white beans, by 46% at the low rate. Shoot dry weight was decreased 26 to 92% in black, otebo, pinto, white, and yellow eye beans at the high rate. There were no differences in the shoot dry weight of the other market classes. Linuron PRE at the low rate reduced otebo bean yield 42% and at the high rate reduced yields by 56, 74, and 61% in black, otebo, and white beans, respectively. There was no effect on the yield of other market classes. Differences in dry bean market class tolerance to linuron exists and may be summarized for these cultivars as cranberry > kidney > brown > yellow eye > pinto > black > white > otebo. Additional research is needed to determine if cultivars within a dry bean market class differ in their response to linuron.


2007 ◽  
Vol 21 (1) ◽  
pp. 230-234 ◽  
Author(s):  
Peter H. Sikkema ◽  
Christy Shropshire ◽  
Nader Soltani

Three field trials were conducted over a 2-yr period (2004 and 2005) at Exeter and Ridgetown, Ontario to evaluate the tolerance of eight market classes of dry beans to KIH-485 applied PRE at 210 and 420 g ai/ha. KIH-485 PRE caused as much as 67% visual injury in small-seeded and 44% visual injury in large-seeded dry beans. KIH-485 applied PRE at 420 g/ha reduced plant height up to 47% at Ridgetown and 8% at Exeter in 2004, and reduced height of brown and white bean by 15 and 19%, respectively, but had no effect on the height of the other beans in 2005. Shoot dry weight was not affected at Exeter in 2004 but was reduced by 46% at Ridgetown in 2004 and 14% at Exeter in 2005. In 2004, seed moisture content increased by 5, 6, and 12% in black, otebo, and pinto beans, respectively. Seed yield was reduced up to 27% at Ridgetown and 11% at Exeter in 2004 but was not affected at Exeter in 2005. On the basis of this research, KIH-485 PRE causes unacceptable injury in some dry bean market classes.


2016 ◽  
Vol 30 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Zhenyi Li ◽  
Rene C. Van Acker ◽  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

White bean tolerance and weed control were examined by applying halosulfuron alone or in combination with pendimethalin, dimethenamid-P, orS-metolachlor applied PRE. All herbicides applied alone or in combination caused less than 3% visible injury 1 and 4 wk after emergence (WAE). Halosulfuron applied PRE provided greater than 95% control of common lambsquarters, wild mustard, redroot pigweed, and common ragweed and less than 55% control of green foxtail at 4 and 8 WAE. Weed density and dry weight at 8 WAE paralleled the control ratings. Dry bean yields in halosulfuron plus a soil applied grass herbicide did not differ compared to the weed-free control. Green foxtail competition with halosulfuron PRE applied alone resulted in reduced white bean yield compared to the weed-free control.


2009 ◽  
Vol 23 (4) ◽  
pp. 535-539 ◽  
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Five field trials were conducted over a 2-yr period (2007, 2008) at various locations in Ontario to evaluate the tolerance of black, cranberry, kidney, otebo, pink, pinto, small red Mexican (SRM), and white bean to halosulfuron applied PPI, PRE, and POST at 35 and 70 g ai/ha. There was minimal injury (3% or less) with halosulfuron applied PPI or PRE in dry bean. At Exeter and Ridgetown, halosulfuron applied POST at 35 and 70 g/ha caused 3 to 5% and 4 to 8% injury in dry bean, respectively at 1 wk after herbicide application (WAA). The injury was transient with no significant injury at 2 and 4 WAA. At Harrow, halosulfuron POST at 35 and 70 g/ha caused as much as 4% injury at 35 g/ha and 14% injury at 70 g/ha in dry bean. Halosulfuron applied PPI, PRE, and POST at 35 and 70 g/ha caused no decrease in plant height of dry bean except for kidney bean, which was reduced 6% at 70 g/ha, and white bean, which was reduced 3% at both 35 and 70 g/ha. Halosulfuron applied PPI, PRE, and POST at 35 and 70 g/ha caused no decrease in dry bean yield except for kidney bean, which was reduced 9% at 35 g/ha and 10% at 70 g/ha; otebo bean, which was reduced 3% at 70 g/ha; and white bean, which was reduced 7% at both 35 and 70 g/ha. On the basis of these results, there is an adequate margin of crop safety in dry bean to halosulfuron applied PPI or PRE at 35 and 70 g/ha. In addition, there is an adequate margin of crop safety in black, cranberry, pink, pinto, and SRM bean to halosulfuron applied POST at 35 and 70 g/ha. However, further research is required to ascertain the tolerance of kidney, otebo, and white bean to halosulfuron applied POST.


2006 ◽  
Vol 20 (4) ◽  
pp. 862-866 ◽  
Author(s):  
Peter H. Sikkema ◽  
Darren E. Robinson ◽  
Christy Shropshire ◽  
Nader Soltani

Weed management is a major production issue facing otebo bean growers in Ontario. Field trials were conducted at six Ontario locations during a 2-yr period (2003 and 2004) to evaluate the tolerance of otebo bean to the preplant incorporated (PPI) application of EPTC at 4,400 and 8,800 g ai/ha, trifluralin at 1,155 and 2,310 g ai/ha, dimethenamid at 1,250 and 2,500 g ai/ha,S-metolachlor at 1,600 and 3,200 g ai/ha, and imazethapyr at 75 and 150 g ai/ha. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI resulted in minimal (less than 5%) visual injury and with exception of the low rate of dimethenamid causing a 16% reduction in shoot dry weight and the high rate causing an 8% plant height reduction had no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Imazethapyr applied PPI caused up to 7% visual injury and reduced plant height, shoot dry weight, and yield 8, 18, and 12% at 75 g/ha and 19, 38, and 27% at 150 g/ ha, respectively. Seed moisture content was also reduced by 0.4% with both rates. Based on these results, otebo bean is not tolerant of imazethapyr applied PPI at rates as low as 75 g/ha, the proposed use rate. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI have a 2× rate crop safety margin for use in otebo bean weed management.


2005 ◽  
Vol 19 (3) ◽  
pp. 669-673 ◽  
Author(s):  
Nader Soltani ◽  
Darren E. Robinson ◽  
Allan S. Hamill ◽  
Stephen Bowley ◽  
Peter H. Sikkema

Limited information exists on the tolerance of processing tomato to postemergence (POST) application of thifensulfuron-methyl. The tolerance of 13 processing tomato varieties, ‘CC337’, ‘H9144’, ‘H9314’, ‘H9478’, ‘H9492’, ‘H9553’, ‘H9909’, ‘N1069’, ‘N1082’, ‘N1480E’, ‘N1480L’, ‘N1522’, and ‘PETO696’, to POST applications of thifensulfuron-methyl at the maximum use rate (6 g ai/ha) and twice the maximum use rate (12 g/ha) for soybean was evaluated at two Ontario locations in 2001 and 2002. At 7 days after treatment (DAT), thifensulfuron applied POST caused 0.2 to 1% visible injury to CC337, H9144, N1082, N1522, and PETO696 at the high rate. H9553, H9909, N1069, and N1480E were the most sensitive to POST thifensulfuron-methyl, with visible injury ranging from 1 to 6% at the high rate. There was no visible injury to H9314, H9478, H9492, or N1480L at either application rate of thifensulfuron-methyl. By 28 DAT, no visible injury was noted to any variety, except for H9909, N1069, and N1480L, which showed minimal (<2%) visible injury. There were no adverse effects on shoot dry weight and marketable yield for any variety at either rate. Although thifensulfuron-methyl applied POST caused minimal and transient injury to the varieties tested, more tolerance trials with other fresh and processing tomato varieties are required to confirm these initial results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Field studies were conducted in 2010 and 2011 at the Huron Research Station, Exeter, Ontario and from 2009 to 2011 at the University of Guelph Ridgetown Campus, Ridgetown, Ontario to evaluate the sensitivity of four market classes of dry bean to sulfentrazone applied preemergence at 105, 140, and 280 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha. At 1 week after emergence (WAE), sulfentrazone alone or in combination with imazethapyr at all doses evaluated caused no significant visible injury in dry bean. At 2 WAE, sulfentrazone alone caused 1–11, 1–11, 1–5, and 3–19% visible injury, and sulfentrazone + imazethapyr caused 3–11, 2–10, 2–5, and 4–20% visible injury in black, cranberry, kidney, and white bean, respectively. At 4 WAE, sulfentrazone alone caused 1–7, 1–7, 0–4, and 1–16% visible injury and sulfentrazone + imazethapyr caused 1–8, 1–5, 1–3, and 2–14% visible injury in black, cranberry, kidney, and white bean, respectively. Sulfentrazone PRE caused slightly greater injury in black and white bean compared to cranberry and kidney bean. Generally, crop injury with sulfentrazone at rates up to 140 g ai/ha alone and in combination with imazethapyr at 37.5 g ai/ha was minimal with no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Based on these results, there is potential for preemergence application of sulfentrazone at rates up to 140 g ai/ha alone or in combination with imazethapyr at 37.5 g ai/ha in black, cranberry, kidney and white bean.


2006 ◽  
Vol 86 (2) ◽  
pp. 601-604 ◽  
Author(s):  
P. H. Sikkema ◽  
N. Soltani ◽  
C. Shropshire ◽  
D. E. Robinson

Limited herbicide options are available to adzuki bean growers in southwestern Ontario. Six field trials were conducted in Ontario during 2003 and 2004 to evaluate the tolerance of adzuki bean to dimethenamid (1250 and 2500 g a.i. ha-1), S-metolachlor (1600 and 3200 g a.i. ha-1), clomazone (1000 and 2000 g a.i. ha-1), and imazethapyr (75 and 150 g a.i. ha-1) applied pre-emergence. Dimethenamid caused up to 37% visual injury and reduced plant height, shoot dry weight and yield 27, 59 and 52%, respectively. Seed maturity was also delayed by dimethenamid at 2500 g ha-1. S-metolachlor caused up to 34% visual inj ury and reduced plant height, shoot dry weight and yield 27, 48 and 48%, respectively. Clomazone caused 53% visual injury and reduced plant height, shoot dry weight and yield 47, 84 and 78%, respectively. Imazethapyr caused up to 6% visual injury; however, this injury was transient with no adverse effect on plant height, shoot dry weight, seed moisture content and yield of adzuki bean. Based on these results, dimethenamid, S-metolachlor and clomazone applied pre-emergence (PRE) do not have an adequate margin of crop safety for use in adzuki bean at the doses evaluated. However, imazethapyr applied PRE has an adequate margin of crop safety for weed management in adzuki bean production in Ontario at the doses evaluated. Key words: Clomazone, dimethenamid, imazethapyr, S-metolachlor, tolerance


Sign in / Sign up

Export Citation Format

Share Document