Carrier Volume Affects Wheat Response to Simulated Glyphosate Drift

2008 ◽  
Vol 22 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Christopher A. Roider ◽  
James L. Griffin ◽  
Stephen A. Harrison ◽  
Curtis A. Jones

The influence of carrier volume was evaluated in field experiments for glyphosate applied to wheat at rates representing 12.5 and 6.3% of the usage rate of 1,120 g ai/ha (140 and 70 g/ha, respectively). Wheat at first node and at heading was exposed to glyphosate applied in a constant carrier volume of 234 L/ha, where herbicide concentration declined with reduction in dosage, and in proportional carrier volumes of 30 L/ha for the 12.5% rate and 15 L/ha for the 6.3% rate, where herbicide concentration remained constant. At 28 d after treatment, glyphosate applied at first node in proportional carrier volume (an average for 30 and 15 L/ha adjusted proportionally to glyphosate rate) reduced wheat height 42% compared with 15% when glyphosate was applied in 234 L/ha. Height reduction was no more than 15% when glyphosate was applied at heading in 234 L/ha or in the proportional carrier volumes and at first node in 234 L/ha. Wheat yield was reduced 42% when glyphosate at 140 g/ha was applied in 234 L/ha but was reduced 54% for the same rate applied in proportional carrier volume. For 70 g/ha glyphosate, wheat yield was reduced 11% when applied in 234 L/ha, but was reduced 42% when the same rate was applied in proportional carrier volume. Wheat yield reduction was equivalent when glyphosate was applied in 234 L/ha at first node and at heading (29 and 24%, respectively), but yield reductions of 60% for first node application and 36% for heading application were observed when glyphosate was applied in a proportional carrier volume. When averaged across carrier volumes and glyphosate rates, the greater yield loss from application at first node was attributed to decreased number of spikelets per spike and seed weight per spike.

2015 ◽  
Vol 29 (4) ◽  
pp. 684-688 ◽  
Author(s):  
Mark A. Matocha ◽  
Curtis A. Jones

Research was conducted in 2010 and 2012 to determine the effect of simulated drift of nicosulfuron on growth and yield of grain sorghum. Herbicide rates represented 25, 12.5, and 6.3% of the use rate of nicosulfuron at 52 g ai ha−1. Nicosulfuron was applied in a constant carrier volume of 224 L ha−1where herbicide concentration decreased with reduction in rate, and in carrier volumes of 56, 28, and 14 L ha−1proportional to the 25, 12.5, and 6.3% herbicide rates, respectively. In 2010, grain sorghum injury and yield were greater when nicosulfuron was applied in constant compared to proportional carrier volume. Grain sorghum injury and plant height reduction increased with increasing nicosulfuron rate when averaged across carrier volume both years. In 2012, there was a greater reduction in grain sorghum yield from nicosulfuron applied in proportional carrier volume. These data indicate that simulated drift of nicosulfuron onto conventional grain sorghum causes significant height and yield reduction even at the lowest herbicide rate tested, and the effect of carrier volume may be influenced by seasonal rainfall.


1974 ◽  
Vol 14 (70) ◽  
pp. 656 ◽  
Author(s):  
DJ Gilbey

The effect of doublegee (Emex australis) density on wheat yield was studied in a field trial. Percentage yield reduction (y) was related to doublegee plants m-2 at 1 week (x1) and 8 weeks (x2) after seeding thus: y = 10.3 + 0.24 x1 r = 0.78*** y = 5.6 + 0.44 x2 r = 0.86*** showing that estimates of doublegee density could be used for forecasting crop yield losses before it is too late to spray. No further yield loss occurred when x1 was greater than 120 plants metre-2. Doublegee seedling mortality that occurred during the seven weeks between plant counts was strongly related to the initial counts (x1) thus: r = 0.88***.


1991 ◽  
Vol 71 (3) ◽  
pp. 841-850 ◽  
Author(s):  
D. W. Douglas ◽  
A. G. Thomas ◽  
D. P. Peschken ◽  
G. G. Bowes ◽  
D. A. Derksen

The influence of summer and winter annual scentless chamomile (Matricaria perforata Mérat) on the yield of spring wheat in Saskatchewan was determined. In experimental plots, spring wheat was seeded into barley stubble where summer and winter annual scentless chamomile had been established. A rectangular hyperbolic model was used to describe the relationship between wheat yield and the density of flowering scentless chamomile plants. Winter annuals caused more yield reduction than did summer annuals. Weather conditions appeared to have an influence on the effect of scentless chamomile on spring wheat yield. The same model was fitted to sample data from farmers' fields and showed yield losses similar to those on the experimental plots. The rectangular hyperbolic model fitted the data best when high weed densities occurred. At densities more typical of those found in farm fields, the asymptotic yield loss parameter of the model was poorly estimated. Key words: Scentless chamomile, Matricaria perforata, yield loss, weed competition, rectangular hyperbola, spring wheat


1992 ◽  
Vol 6 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Dallas E. Peterson ◽  
John D. Nalewaja

Yield reductions due to green foxtail competition with hard red spring wheat varied with environment in field experiments conducted in 1984, 1985, and 1986 at Oakes, Langdon, Prosper, and Fargo, North Dakota. Wheat yield reductions ranged from 0 to 47% from 720 green foxtail plants per m2. Inclusion of early season temperature and precipitation, soil texture, and foxtail density into multiple regression analysis of wheat yield reductions significantly increased the coefficient of determination to 0.62 compared with 0.12 for regression based on green foxtail density alone. Wheat yield reduction decreased as green foxtail seeding was delayed after wheat seeding in 1986. Wheat yield generally decreased as time of diclofop application was delayed from 2 to 6 wk after wheat emergence in 1986.


1997 ◽  
Vol 77 (4) ◽  
pp. 685-689 ◽  
Author(s):  
A. G. Xue ◽  
T. D. Warkentin ◽  
E. O. Kenaschuk

Inoculated field experiments were carried out in 1994 and 1995 to study the effect of the timing of inoculation with Mycosphaerella pinodes (Berk. & Bloxam) Vestergren on disease development, yield reduction and seed infection, in three field pea (Pisum sativum L.) cv. Bohatyr, cv. Scorpio and cv. Triumph. The greatest impact of inoculation on all disease and yield parameters was at the 8–10 node stage in 1994, and at the mid-flowering stage in 1995. The lowest impact of inoculation was at the pod swell stage for both years. When inoculated at 8–10 nodes, mid-flowering and pod swell stages, M. pinodes reduced yield by 31, 24 and 19%, respectively, in 1994 and 33, 43 and 30%, respectively, in 1995. The 1000-seed weight was not affected by the timing of inoculation; however, all inoculations reduced seed weight in both years. Plant-to-seed transmission of M. pinodes was affected by the timing of inoculation in 1994, but not in 1995. Results of this study suggest that prevention of early infection by M. pinodes will provide the best economic return in a mycosphaerella blight control program on field pea. Key words: Mycosphaerella blight, Mycosphaerella pinodes, field pea, Pisum sativum, yield reduction


Weed Science ◽  
2007 ◽  
Vol 55 (1) ◽  
pp. 70-74 ◽  
Author(s):  
John T. O'Donovan ◽  
K. Neil Harker ◽  
George W. Clayton ◽  
Linda M. Hall ◽  
Jason Cathcart ◽  
...  

There is no published information on the impact of volunteer barley on wheat yield loss or on the economics of controlling barley with a herbicide. With the registration of imazamox-resistant wheat, it is now possible to control volunteer barley in wheat. Thus, the likelihood of growing wheat in rotation with barley may increase. Field experiments were conducted in 2003 and 2004 at Beaverlodge, Lacombe, and Edmonton, AB, Canada, and Saskatoon, SK, Canada, to determine the impact of volunteer barley on yield of imazamox-resistant spring wheat seeded at relatively low (100 kg ha−1) and high (175 kg ha−1) rates. Barley was seeded at different densities to simulate volunteer barley infestations. Regression analysis indicated that wheat-plant density influenced the effects of volunteer barley interference on wheat yield loss, economic threshold values, and volunteer barley fecundity among locations and years. Economic thresholds varied from as few volunteer barley plants as 3 m−2at Beaverlodge in 2003 and 2004 to 48 m−2at Lacombe in 2003. In most cases, wheat yield loss and volunteer barley fecundity were lower and economic thresholds were higher when wheat was seeded at the higher rate. For example, averaged over both years at Beaverlodge initial slope values (percentage of wheat yield loss at low barley density) were 4.5 and 1.7%, and economic threshold values of volunteer barley plants were 3 m−2and 8 m−2at low and high wheat seeding rates, respectively. Results indicate that volunteer barley can be highly competitive in wheat, but yield losses and wheat seed contamination due to volunteer barley can be alleviated by seeding wheat at a relatively high rate.


Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 1034-1038 ◽  
Author(s):  
David W. Fischer ◽  
R. Gordon Harvey ◽  
Thomas T. Bauman ◽  
Sam Phillips ◽  
Stephen E. Hart ◽  
...  

Variation in crop–weed interference relationships has been shown for a number of crop–weed mixtures and may have an important influence on weed management decision-making. Field experiments were conducted at seven locations over 2 yr to evaluate variation in common lambsquarters interference in field corn and whether a single set of model parameters could be used to estimate corn grain yield loss throughout the northcentral United States. Two coefficients (IandA) of a rectangular hyperbola were estimated for each data set using nonlinear regression analysis. TheIcoefficient represents corn yield loss as weed density approaches zero, andArepresents maximum percent yield loss. Estimates of both coefficients varied between years at Wisconsin, andIvaried between years at Michigan. When locations with similar sample variances were combined, estimates of bothIandAvaried. Common lambsquarters interference caused the greatest corn yield reduction in Michigan (100%) and had the least effect in Minnesota, Nebraska, and Indiana (0% yield loss). Variation inIandAparameters resulted in variation in estimates of a single-year economic threshold (0.32 to 4.17 plants m−1of row). Results of this study fail to support the use of a common yield loss–weed density function for all locations.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1381-1383 ◽  
Author(s):  
Nader Soltani ◽  
Peter H. Sikkema ◽  
Darren E. Robinson

Limited information exists on sweet corn (Zea mays) tolerance to postemergence (POST) applications of thifensulfuron-methyl under Ontario growing conditions. Eight sweet corn hybrids were evaluated for tolerance to thifensulfuron-methyl in four field experiments conducted in 2003 and 2004. Thifensulfuron-methyl was applied POST at 6 and 12 g·ha–1 a.i., the registered and twice the registered rate for use in soybean in Ontario. Sweet corn hybrid responses to thifensulfuron-methyl varied. Delmonte 2038 was the most sensitive to thifensulfuron-methyl and had as much as 92% visual injury, 76% height reduction, and 98% yield reduction compared to the nontreated control. Empire, GH1861, GH2298, and GH2684 hybrids showed visual injury of 53%, 55%, 53%, and 61%, height reduction of 34%, 31%, 32%, and 26% and yield reduction of 77%, 68%, 68%, and 51%, respectively. GG214, GH2547, and GSS9299 sweet corn hybrids were not as sensitive to thifensulfuron-methyl. The initial sensitivity observed in these hybrids was minimal and transient with no effect on yield. Although thifensulfuron-methyl is safe for use on some sweet corn hybrids, it has the potential to cause severe crop injury and yield reduction in other hybrids and therefore it should not be recommended for weed management in sweet corn production in Ontario.


1971 ◽  
Vol 11 (52) ◽  
pp. 550 ◽  
Author(s):  
BR Keed ◽  
NH White

The effects of Puccinia recondita and/or P. graminis var. tritici on the yield and quality of four Australian wheat cultivars were measured in 18 field experiments. Fortnightly applications of Dithane. S-31(R) provided almost rust-free plots for comparison with plots in which rust was allowed to develop. Leaf and stem rust intensities were assessed using the key diagram of Large and Griffin. Leaf rust caused a maximum loss of yield of 26 per cent on Mendos and 22 per cent on Gamut. Stem rust on 1156.238 caused losses of up to 49 per cent while both leaf and stem rusts on Gabo resulted in a maximum yield loss of 55 per cent. With all four cultivars, most of the yield reduction was caused by a reduction in the weight of individual grains, reflected in the losses in 1,000 grain weights. Infection by leaf or stem rust generally resulted in a reduction in bushel weight and protein content.


2018 ◽  
Vol 69 (4) ◽  
pp. 387 ◽  
Author(s):  
Dimitrios N. Vlachostergios ◽  
Anastasios S. Lithourgidis ◽  
Dimitrios V. Baxevanos ◽  
Athanasios G. Mavromatis ◽  
Christos S. Noulas ◽  
...  

A major constraint of lentil (Lens culinaris Medik.) cultivation is yield reduction due to field infestation by the seed beetles Bruchus spp. (bruchids). The aim of the study was to assess seed loss (SL) and yield loss (YL) due to bruchid infestation under organic and conventional farming, and to investigate genotypic variability for seed yield of 20 lentil varieties in response to bruchid damage. Field experiments were established over three consecutive years in two areas of central and northern Greece. SL was determined as the percentage of damaged seeds, whereas the weight of the damaged seeds was estimated as YL. Farming system was the main source of variation for both SL and YL. Mean SL under organic farming was 15% and mean YL was 0.13 t ha–1. SL and YL were 2.6- and 8.4-fold higher, respectively, under organic than conventional farming. Valuable genotypic variability was observed with respect to both SL and YL. Early flowering and small seed size were traits associated with low SL and YL. Among varieties, mean SL ranged from 8.5% to 29.2% and YL from 0.06 to 0.31 t ha–1. Evaluation for high yield potential, indicating bruchid tolerance, revealed two types of promising varieties: varieties with high yield and low seed bruchid damage due to phenological escape, and varieties with high yielding potential despite the high SL and YL.


Sign in / Sign up

Export Citation Format

Share Document